

Abstract - In data science, data visualization has long been of

interest since it is necessary to explore the patterns and

underlying structure of data. Over the years, various data

visualization methods have been developed. Among them, Self-

Organizing Maps (SOM) is one of the most widely used methods

due to its simplicity. However, the robustness of a SOM largely

depends on the initial choice of prototype vectors in it. On the

other hand, this problem has not been extensively studied in the

literature. In this study, we introduce a novel method for

initializing the prototype vectors of SOM, which we call BCI and

which has its roots in Borda Count (BC), a ranked voting system.

A large set of experiments confirmed the effectiveness of BCI and

showed that it outperforms both the random initialization and

PCI, the state-of-the-art initialization method, in terms of

quantization error, which indicates how well the SOM reflects

the original feature space.

Keywords – Data Mining, Data Visualization, Self-Organizing

Maps, Borda Count.

I. INTRODUCTION

egardless of the type of data we are interested in, e.g.,

images, audio, sensors, etc., the data often has a high

dimension. On the other hand, we humans cannot see more

than three dimensions. This makes it difficult to understand

the underlying structure of the data. For this reason, more and

more data visualization methods have been developed not only

in data science but also in various other fields [1,2].

 Among all data visualization methods developed so far,

Self-Organizing Maps occupy a special place [2]. Since its

introduction by Kohonen in 1990, SOM has found various and

numerous applications [3]. The main reason for the success of

SOM is the fact that SOM is a simple yet powerful

visualization method and can preserve the topology of data.

Although it is inherently a heuristic method, the theoretical

aspects of SOM have also been addressed so that SOM comes

with theoretical guarantees [4].

 The working principle of SOM can be summarized as

follows. A SOM consists of a series of adjacent cells,

generally arranged in a 2D map, with each cell associated with

a prototype (weight) vector of the same dimension as the

original data. Training a SOM involves learning these vectors.

Once the training process is complete, each instance is

mapped to one of the cells in the map based on its distances

from the prototype vectors. Here, the prototype vectors are

learned using an iterative algorithm where the initial values for

the vectors are randomly selected [2]. Such a random process

not only increases the learning time, but also leads to different

visualization results.

 To illustrate the above random problem, we provide a small

dataset in Table 1. This dataset represents seven G7 countries

based on five features: population (millions), life expectancy

(years), Co2 emissions (MTCo2e), rule of law and GDP per

capita (Dollars). With this data, we construct two SOMs of

dimensions 3 by 3 and initialize the prototype vectors

differently. Even after one thousand iterations in both

applications, the underlying algorithm does not converge,

resulting in two different SOMs: SOM1 and SOM2. See

Figure 1. Here, a natural question to ask is which is the correct

one?
Table 1: G7 Countries (Population (millions), life expectancy (years),

Co2 emissions (MTCo2e), rule of law and GDP per capita (Dollars))

(Source: World Economics 2021)

Country Pop. Life Exp. Co2 Law GDP

Canada 38.1 82 576.7 89.5 53509

France 65.4 83 323.6 81.4 52721

Germany 83.9 81 702 87.1 58283

Italy 60.4 84 337.1 54.6 50764

Japan 126.1 85 1106.7 86.3 44744

UK 68.2 81 369.9 85.6 49858

USA 332.9 79 5284.7 82.4 67651

Figure 1: Two SOMs using the G7 data in Table 1 with

different initializations

 Although random selection of the prototype vectors is a

serious problem and leads to quite different SOM results, there

are few studies addressing this issue. One notable study is [5],

which is based on using PCA to reduce the original

dimensionality to two, and then finding the nearest cell for

each datum based on the (2D) coordinates of the cells.

However, this method requires an eigendecomposition, which

A Borda Count Based Initialization Method for

Self-Organizing Maps

S. ŞENOL1 and F. İSMAİLOĞLU1

1 Sivas Cumhuriyet University, Sivas/Turkey, sumeyrasenol43@gmail.com
1 Sivas Cumhuriyet University, Sivas/Turkey, fismailoglu@cumhuriyet.edu.tr

R

143 International Conference on Engineering Technologies (ICENTE’22)

E-ISBN: 978-605-72066-2-6 November 17-19, 2022, Konya, TURKEY

is costly, especially for high dimensions.

 In this paper, we introduce a novel initialization method for

SOM. In particular, our method addresses initialization of the

prototype vectors in SOM so that the SOM algorithm can

converge faster and end up with the same map for each run.

The proposed method has its roots in the Borda count, a voting

method that has been used for centuries to determine the

ranking of candidates that best fits voters' preferences [6]. In

short, we rank the cells of a SOM using Borda count from the

most central to the least central; and we rank the data instances

from the most central to the most distant. We then match these

two rankings and assign the instances to the cells. Finally, the

mean of the instances that are assigned to a particular cell

becomes the initial prototype vector of that cell. This method

offers several advantages, including i) ease of implementation

ii) faster convergence iii) robustness.

In the remainder of the paper, we first review the literature

on data visualization methods and SOM in particular, and then

provide background information on SOM. We then proceed to

the proposed method and conduct experiments to test its

effectiveness. Finally, we summarize the study and point out

possible future developments.

II. RELATED WORK

 Data visualization refers to the visual representation of data,

and this representation can consist of charts, plots, graphs, or

even animations. With these tools, one can effortlessly gain

useful insights from the data at hand. Common data analysis

tasks such as outlier detection, correlation analysis, and

highlighting trends can all be performed with ease by

visualizing the data. Because of these advantages, data

visualization has gained an increasing popularity and is being

studied by researchers with diverse backgrounds, from

statisticians to psychologists [7].

 Millions of data are obtained during the day from the

internet searches we make every day, the records kept when

we go to the hospital, the receipts of the products we buy

while shopping, the transactions we make at the bank and

many other areas of our daily life. Various data visualization

methods are used to understand what these data mean.

 As emphasized above, visualizing data is of crucial

importance to get to know the data. Nevertheless, data often

has a high dimension, which makes it nontrivial to visualize.

In this sense, it is common to reduce the dimension of the data

to two or three so that we can easily plot it. One of the most

common methods for this purpose is PCA, which is based on

projecting the data into the space spanned by the eigenvectors

of the covariance matrix of the data. Although it offers the

advantage of projecting the data into an uncorrelated space, it

involves an eigendecomposition problem and is therefore

computationally expensive.

 Another popular method for data visualization is t-SNE,

which, unlike PCA, provides nonlinear dimensionality

reduction [8]. In fact, t-SNE is commonly used as the de facto

standard for visualizing data in 2D spaces. Generally

speaking, t-SNE creates two probability distributions, one for

the original high-dimensional data and one for the reduced 2D

data. It then tries to minimize the KL divergence between

these two probability distributions, where the minimization

imposes a non-convex optimization problem. The resulting

problem is usually solved using a gradient descent with

random initialization. Therefore, t-SNE may get stuck at local

minima and not guarantee a global solution [8].

Self-Organizing Maps (SOM) have long served as the

primary data visualization method. The reason for its

popularity lies in its simplicity and the fact that it allows for

clustering of data, in addition to being a visualization method

[2, 3].

At a high level, SOM maps instances in a 2D map

consisting of a series of adjacent cells of square shape. See

Figure 1. The rule that governs the mapping is to assign each

instance to the cell whose associated prototype vector is

nearest to the vector. Learning the prototype vectors is

equivalent to building a SOM. We will detail this process in

the next section.

Considering the fact that SOM has been widely used for a

long time, it is not surprising that there are several variants of

it. One of the best known variants is the growing SOM

(GSOM), which (usually) starts with a SOM of size 2x2 and

then grows it from all cells based on a heuristic criterion [9].

In contrast to the conventional case, here, there is no fixed

shape for the map, in fact it is tailored to the data at hand.

Another important variant is the hexagonal SOM, in which the

cells have a hexagonal shape. The distinguishing element of

this variant is that each cell has six neighbors, not four as is

the case with square cells. Finally, Kohonen, the inventor of

SOM, proposed a batch version of SOM [10], which proposes

to update the prototype vectors only at the end of each

iteration of the training, whereas in the conventional case they

are updated after the presentation of each instance. The main

advantage of this version is that the learning of the prototype

vectors is independent of the order of the instances.

As mentioned earlier, Kohonen proposed to randomize the

initial values for the prototype vectors. In practice, however,

this results in different final values for the vectors, which in

turn results in different maps each run of the SOM. Therefore,

it is necessary to initialize the vectors deterministically. For

this purpose, the most commonly used initialization method is

principal component initialization (PCI) [5]. The working

principle of PCI is as follows. Let 1e and 2e
be the first two

eigen vectors of the data; and a and b are two real numbers

such that ba  . Suppose that we have a SOM with m cells

in the vertical axis and n cells in the horizontal axis and that

),...,,(b
m

ab
aau

−
+=

 and

),...,,(b
n

ab
aav

−
+=

are

two sequences. PCI determines the initial prototype vector of

the cell with coordinates
),(ji

as 21)()(ejveiu +
, where

)(iu
denotes the i th element of the sequence .u

144 International Conference on Engineering Technologies (ICENTE’22)

E-ISBN: 978-605-72066-2-6 November 17-19, 2022, Konya, TURKEY

III. SELF-ORGANIZING MAPS

Let X be a given data matrix consisting of k instances

with dimension d , thus
dkX  . Also let  baX : be a

submatrix formed by the rows of X from the a th row to

b th row. Our task is to map such instances to a SOM, a grid

of cells (units) organized as a 2D map. Here, each cell is

associated with a prototype vector (weight vector) of the

dimension d , i.e. that of the original input space. Training a

SOM means learning these vectors, and after the training is

complete, each instance is matched to a cell with the prototype

vector closest to it. In the literature, these cells are called as

Best Matching Units (BMU).

Conventionally, the prototype vectors are randomly

initialized and then iteratively updated. In each iteration, an

instance is picked randomly and its BMU is calculated. Based

on the BMU, all prototype vectors are updated. For the update

of the j th prototype vector at iteration)1(+t is as follows:

))(()()()1()(twxhttwtw jxjcjj −+=+  , (1)

where)(t denotes the learning rate and
)(xjch the magnitude

of the closeness between the j th prototype vector and)(xc ,

the BMU of the randomly picked instance x . In particular,

 is chosen as a decreasing function of time, and typically

specified as:

)exp()(0  −= tt (2)

where 0 is the initial learning rate and 0 is the decay

rate specified by the user. For)(xjch , it is typically to consider

the Gaussian neighborhood function:













 −−
=

2

)(

)(
)(2

exp
t

rr
h

xcj

xjc


 (3)

where jr and)(xcr are the coordinates of the j -th prototype

vector and the BMU respectively. Here)(t corresponds to

the width of the neighborhood and decreases over time, and

the decrease can be calculated using (2) ensuring that 0 is

replaced by 0 , the initial value for width. The rationale

behind decreasing  and  over time is to is to reduce the

effect of updating of prototype vectors over time so that the

learning process converges. We also note that the underlying

idea of the update rule given (1) is to draw the prototype

vectors in proportion to their closeness to the instance of

interest.

IV. PROPOSED METHOD

As mentioned earlier, the initial prototype vectors, i.e.

),0(jw  ()nmj  ,...,1 , are determined randomly, which

leads to instability and slow convergence when learning the

prototype vectors. To address this problem, we propose the

following method based on Borda Count (BC). We thus name

this method as BCI.

Our method consists of three phases. In the first phase, we

rank the cells of SOM using BC. Specifically, for a SOM with

nm cells, we construct a ranking vector for each cell which

is a permutation of integers from 1 to nm . For the i -th

cell, this vector is denoted as
cell

ip whose l -th element is the

rank of l -th cell for i -th cell, where the ranking is based on

the closeness to the i -th cell. In the case of a tie, that is, when

more than one cell is equidistant from the cell of interest, each

cell is assigned the average rank. For example, for a SOM of

size 33 , as shown in Figure 2, the ranking vector for the

first cell is ()9,5.7,5.5,5.7,4,5.2,5.5,5.2,11 =cellp .

Figure 2: A 3x3 SOM with indices

BC receives these ranking vectors from all cells as input and

then outputs the final ranking by summing all vectors and

sorting the cells based on this sum. For the example above, the

final ranking of the SOM cells is

()9,7,3,1,8,6,4,2,5_ =rankcell . This result reflects the

original layout of the SOM, in fact the fifth cell is the most

central cell and therefore comes first in the final ranking. Also,

the cells with indices 1, 3, 7, and 9 are located in the corners

of the SOM hence they share the last places in the ranking.

 In the second phase of the proposed method, we instead

rank the instances, following much the same procedure used

for the cells. We thus omit the details of ranking instances

with BC. As an example, if we rank the G7 countries with BC

based on the data matrix in Table 1, then the final ranking is

France, Canada, Italy, UK, Germany, Japan and USA. We

shall denote the rank associated with the instances as

rankinst _ .

 In the final step, we assign the instances to the cells based

on the (final) ranking of the cells and the instances obtained in

the previous two phases. For the G7 data, this assignment is

done as follows:

Ranking of the instances Ranking of the SOM cells

France 5

Canada 2

Italy 4

UK 6

Germany 8

Japan 1

USA 3

 7

 9

Finally, the initial prototype vector of a cell is considered to be

the instance assigned to that cell. For example, the initial

prototype vector of the fifth cell is [65.4, 83,323.6, 81.4,

145 International Conference on Engineering Technologies (ICENTE’22)

E-ISBN: 978-605-72066-2-6 November 17-19, 2022, Konya, TURKEY

52721] data vector corresponding to France. If the number of

instances is less than the number of cells, as in the above

example, some cells are not matched with any instances. If

this is the case, we can initialize the prototype vectors

corresponding to these cells randomly. Normally, however,

the number of instances is almost always greater than the

number of cells. Below we explain how to use the proposed

initialization method if this is the case.

 Suppose we have k instances and nm cells, where

nmk  . In this case we rank the instances and the cells

using BC, as described above, and then split the instances into

)/(nmk  chunks, starting with the first instance in the

ranked list. Each chunk of the instance is then assigned to a

cell, starting with the first cell in the ranked list of cells.

Finally, the mean of the instances in the same chunk is

considered the initial prototype vector for the cell to which the

chunk is assigned.

 Here, we provide a pseudocode for our proposed

initialization method for SOM. We also note that the notation

  acts like a ceil operator, returning the smallest integer

greater than its parameter.

Algorithm 1: BCI: A Borda Count Based Initialization

Method for Self-Organizing Maps

Input: Data matrix:
dkX  , SOM with size nm

Output: Initial values for the prototype vectors of the SOM:
d

iw )0( ()nmi  ,...,1

Phase -1: Rank the cells

1: for i =1: nm do

2: calculate
cell

ip

3: end for

4: Using
cell

ip , rank the cells using BC, get rankcell _

Phase -2: Rank the instances

5: for i =1: k do

6: calculate
inst

ip

7: end for

8: Using
inst

ip rank the instances using BC, get rankinst _

9: Based on rankinst _ replace (shuffle) the rows of X

Phase -3: The initialization

11: =c  nmk / (chunk size)

10: 1=t

11: for i in rankcell _ :

12: () ()ctctXmeanwi +−= :11)0(

13 1=+t

V. EXPERIMENTS

In this section we present the results of a range of

experiments to verify the efficiency of the proposed method.

In this sense, we first give the statistics for the datasets used,

then explain the evaluation criterion, and finally provide the

results and the related discussion.

A. The Datasets Used

 We conducted experiments using different types of UCI

datasets. The statistics for these datasets can be found in Table

2.

Table 2: Statistics of the Used UCI Datasets

Dataset Number of instances Number of features

Abalone 4177 8

Breast Cancer 569 32

Ecoli 336 7

Glass 214 9

Iris 150 4

Yeast 1484 8

Zoo 101 17

B. EVALUATION CRITERION

Conceptually, Self-Organizing Maps are examples of

unsupervised learning, where there is no actual truth, i.e.,

classes. Therefore, we cannot simply compare the predictions

and the actual truths to evaluate the performance of the

proposed method. Instead, to assess the quality of a SOM, the

quantization error (QE) is often used. QE measures how well

the SOM reflects the original feature space, which is basically

the average of the distances between instances and the

prototype vectors of the cells to which they are assigned. This

is calculated as:

()
21

1

=

−=
k

i

ii XmX
k

QE (4)

where iX denotes the i -th instance of , i.e., the i -th row

and ()iXm is the prototype vector of its BMU in the SOM.

C. RESULTS

 We compare the results of QE, obtained with the proposed

BCI, with those obtained with random initialization and PCI.

When it comes to determine size of the SOM for each dataset

of interest, we set it to 1010 , resulting in a SOM with 100

cells, which is less than the number of instances in all the

datasets used. Table 3 shows the QE results. The best results

are highlighted for each dataset. We also note that the QE

values obtained with the random initialization are the average

of 100 runs for each dataset.

Table 3: The QE Results Obtained with the Random Initialization,

PCI and BCI

Dataset Random Init. PCI [4] BCI (Ours)

Abalone 0.47 0.24 0.27

Breast Cancer 1.79 0.52 0.47

146 International Conference on Engineering Technologies (ICENTE’22)

E-ISBN: 978-605-72066-2-6 November 17-19, 2022, Konya, TURKEY

Ecoli 0.47 0.36 0.17

Glass 0.62 0.36 0.25

Iris 0.24 0.31 0.04

Yeast 0.56 0.26 0.21

Zoo 1.61 1.17 0.19

D. DISCUSSIONS

The immediate conclusion that can be drawn from Table 3

is that one should not randomly initialize the prototype vectors

in a SOM. The difference between the QE values from the

random initialization and from PCI and BCI is significant. In

fact, for Zoo dataset the QE value is about 8 times higher than

the value obtained with the proposed method BCI. This means

that random initialization of prototype vectors in SOM is risky

and can lead to slow convergence, since it does not yield ideal

initial values.

Comparing the state-of-the-art initialization method, PCI,

and the proposed BCI, it is evident that BCI outperforms PCI

all datasets except Abalone. The difference between the QE

scores ranges from 0.05 to 0.98 in favor of BCI. Relying on

these results, we conclude that the proposed method BCI is a

powerful initialization method for prototype vectors of SOM

and can be used for datasets with different number of

instances and different number of features.

VI. CONCLUSION

Data visualization has long been of interest not only to data

scientists, but also to researchers in other fields, because it

allows for obtaining useful insights from the data at hand. In

this sense, a range of data visualization methods have been

developed. Of them, Self-Organizing Maps (SOM) is one of

the most commonly used methods due to its simplicity and

efficiency. However, the conventional use of SOM suggests

initializing the prototype vectors randomly, which may

ultimately lead to instability and low convergence.

In this study, we propose a novel method for initializing

prototype vectors based on Borda Count (BC). Thus, we call

the proposed method BCI. Basically, BCI first ranks cells of

SOM and instances separately with BC and then assigns the

instances to the cells based on these two rankings. Finally,

BCI calculates the mean of the instances assigned to the same

cell and then considers this mean value as the initial value for

the prototype vector of the cell. The experiments conducted on

seven different UCI datasets confirm the efficiency of BCI and

show that BCI outperforms both the random initialization and

PCI, the state-of-the-art initialization method based on PCA.

Future research will focus on the application of PCI to

different types of SOM, such as growing SOM (GSOM).

REFERENCES

[1] M. Sadiku, A. Shadare, S. M. Musa, C.M. Akujuobi and R. Perry, R.

“Data visualization”. International Journal of Engineering Research And
Advanced Technology (IJERAT), vol: 2(12) pp. 11-16, 2016.

[2] T. Kohonen. “The self-organizing map”. Proceedings of the IEEE, vol:

78(9), pp: 1464-1480, 1990.
[3] T. Kohonen. “Essentials of the self-organizing map.” Neural networks,

vol: 37, pp: 52-65, 2013.

[4] M. Cottrell, M. Olteanu, F. Rossi and N. Vialaneix. “Theoretical and
applied aspects of the self-organizing maps”. WSOM 2016.

[5] A. Akinduko, A. E. Mirkes. and A. N. Gorban. “SOM: Stochastic

initialization versus principal components”. Information Sciences, vol:
364, pp: 213-221, 2016.

[6] P. Emerson. “The original Borda count and partial voting”. Social

Choice and Welfare, vol:40(2), pp:353-358.2013.
[7] K. Healy. “Data visualization: a practical introduction” Princeton

University Press. 2018.

[8] S. Arora, W. Hu and P.K. Kothari. “An analysis of the t-sne algorithm
for data visualization”. In Conference On Learning Theory, pp. 1455-

1462, PMLR, 2018.

[9] D. Alahakoon, S. K. Halgamuge, and B. Srinivasan. “Dynamic self-
 organizing maps with controlled growth for knowledge discovery”.

 IEEE Transactions on neural networks, vol: 11(3), pp: 601-614,

2000.
[10] T. Kohonen. “Things you haven't heard about the Self-Organizing

 Map” In IEEE international conference on neural networks.

pp:1147- 1156. 1993.

147 International Conference on Engineering Technologies (ICENTE’22)

E-ISBN: 978-605-72066-2-6 November 17-19, 2022, Konya, TURKEY

	tum_v2.pdf
	46.pdf
	I. INTRODUCTION
	II. RELATED WORK
	III. SELF-ORGANIZING MAPS
	IV. PROPOSED METHOD
	V. EXPERIMENTS
	A. The Datasets Used
	B. EVALUATION CRITERION
	C. RESULTS
	D. DISCUSSIONS

	VI. Conclusion
	References

