
 

 

Abstract - In data science, data visualization has long been of 

interest since it is necessary to explore the patterns and 

underlying structure of data. Over the years, various data 

visualization methods have been developed. Among them, Self-

Organizing Maps (SOM) is one of the most widely used methods 

due to its simplicity. However, the robustness of a SOM largely 

depends on the initial choice of prototype vectors in it. On the 

other hand, this problem has not been extensively studied in the 

literature. In this study, we introduce a novel method for 

initializing the prototype vectors of SOM, which we call BCI and 

which has its roots in Borda Count (BC), a ranked voting system. 

A large set of experiments confirmed the effectiveness of BCI and 

showed that it outperforms both the random initialization and 

PCI, the state-of-the-art initialization method, in terms of 

quantization error, which indicates how well the SOM reflects 

the original feature space. 
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I. INTRODUCTION 

egardless of the type of data we are interested in, e.g., 

images, audio, sensors, etc., the data often has a high 

dimension. On the other hand, we humans cannot see more 

than three dimensions. This makes it difficult to understand 

the underlying structure of the data. For this reason, more and 

more data visualization methods have been developed not only 

in data science but also in various other fields [1,2]. 

 Among all data visualization methods developed so far, 

Self-Organizing Maps occupy a special place [2]. Since its 

introduction by Kohonen in 1990, SOM has found various and 

numerous applications [3]. The main reason for the success of 

SOM is the fact that SOM is a simple yet powerful 

visualization method and can preserve the topology of data.  

Although it is inherently a heuristic method, the theoretical 

aspects of SOM have also been addressed so that SOM comes 

with theoretical guarantees [4]. 

 The working principle of SOM can be summarized as 

follows. A SOM consists of a series of adjacent cells, 

generally arranged in a 2D map, with each cell associated with 

a prototype (weight) vector of the same dimension as the 

original data. Training a SOM involves learning these vectors. 

Once the training process is complete, each instance is 

mapped to one of the cells in the map based on its distances 

from the prototype vectors. Here, the prototype vectors are 

learned using an iterative algorithm where the initial values for 

the vectors are randomly selected [2]. Such a random process 

not only increases the learning time, but also leads to different 

visualization results.  

 To illustrate the above random problem, we provide a small 

dataset in Table 1. This dataset represents seven G7 countries 

based on five features: population (millions), life expectancy 

(years), Co2 emissions (MTCo2e), rule of law and GDP per 

capita (Dollars). With this data, we construct two SOMs of 

dimensions 3 by 3 and initialize the prototype vectors 

differently. Even after one thousand iterations in both 

applications, the underlying algorithm does not converge, 

resulting in two different SOMs: SOM1 and SOM2. See 

Figure 1. Here, a natural question to ask is which is the correct 

one? 
Table 1: G7 Countries (Population (millions), life expectancy (years), 

Co2 emissions (MTCo2e), rule of law and GDP per capita (Dollars)) 

(Source: World Economics 2021) 

 

Country Pop. Life Exp. Co2 Law GDP 

Canada 38.1 82 576.7 89.5 53509 

France 65.4 83 323.6 81.4 52721 

Germany 83.9 81 702 87.1 58283 

Italy 60.4 84 337.1 54.6 50764 

Japan 126.1 85 1106.7 86.3 44744 

UK 68.2 81 369.9 85.6 49858 

USA 332.9 79 5284.7 82.4 67651 

 

 
Figure 1: Two SOMs using the G7 data in Table 1 with 

different  initializations 

 

 Although random selection of the prototype vectors is a 

serious problem and leads to quite different SOM results, there 

are few studies addressing this issue. One notable study is [5], 

which is based on using PCA to reduce the original 

dimensionality to two, and then finding the nearest cell for 

each datum based on the (2D) coordinates of the cells. 

However, this method requires an eigendecomposition, which 
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is costly, especially for high dimensions. 

 In this paper, we introduce a novel initialization method for 

SOM. In particular, our method addresses initialization of the 

prototype vectors in SOM so that the SOM algorithm can 

converge faster and end up with the same map for each run. 

The proposed method has its roots in the Borda count, a voting 

method that has been used for centuries to determine the 

ranking of candidates that best fits voters' preferences [6]. In 

short, we rank the cells of a SOM using Borda count from the 

most central to the least central; and we rank the data instances 

from the most central to the most distant. We then match these 

two rankings and assign the instances to the cells. Finally, the 

mean of the instances that are assigned to a particular cell 

becomes the initial prototype vector of that cell. This method 

offers several advantages, including i) ease of implementation 

ii) faster convergence iii) robustness. 

In the remainder of the paper, we first review the literature 

on data visualization methods and SOM in particular, and then 

provide background information on SOM. We then proceed to 

the proposed method and conduct experiments to test its 

effectiveness. Finally, we summarize the study and point out 

possible future developments. 

II. RELATED WORK 

 Data visualization refers to the visual representation of data, 

and this representation can consist of charts, plots, graphs, or 

even animations. With these tools, one can effortlessly gain 

useful insights from the data at hand. Common data analysis 

tasks such as outlier detection, correlation analysis, and 

highlighting trends can all be performed with ease by 

visualizing the data. Because of these advantages, data 

visualization has gained an increasing popularity and is being 

studied by researchers with diverse backgrounds, from 

statisticians to psychologists [7]. 

 Millions of data are obtained during the day from the 

internet searches we make every day, the records kept when 

we go to the hospital, the receipts of the products we buy 

while shopping, the transactions we make at the bank and 

many other areas of our daily life. Various data visualization 

methods are used to understand what these data mean. 

 As emphasized above, visualizing data is of crucial 

importance to get to know the data. Nevertheless, data often 

has a high dimension, which makes it nontrivial to visualize. 

In this sense, it is common to reduce the dimension of the data 

to two or three so that we can easily plot it. One of the most 

common methods for this purpose is PCA, which is based on 

projecting the data into the space spanned by the eigenvectors 

of the covariance matrix of the data. Although it offers the 

advantage of projecting the data into an uncorrelated space, it 

involves an eigendecomposition problem and is therefore 

computationally expensive.  

 Another popular method for data visualization is t-SNE, 

which, unlike PCA, provides nonlinear dimensionality 

reduction [8]. In fact, t-SNE is commonly used as the de facto 

standard for visualizing data in 2D spaces. Generally 

speaking, t-SNE creates two probability distributions, one for 

the original high-dimensional data and one for the reduced 2D 

data. It then tries to minimize the KL divergence between 

these two probability distributions, where the minimization 

imposes a non-convex optimization problem. The resulting 

problem is usually solved using a gradient descent with 

random initialization. Therefore, t-SNE may get stuck at local 

minima and not guarantee a global solution [8]. 

Self-Organizing Maps (SOM) have long served as the 

primary data visualization method. The reason for its 

popularity lies in its simplicity and the fact that it allows for 

clustering of data, in addition to being a visualization method 

[2, 3].   

At a high level, SOM maps instances in a 2D map 

consisting of a series of adjacent cells of square shape. See 

Figure 1. The rule that governs the mapping is to assign each 

instance to the cell whose associated prototype vector is 

nearest to the vector. Learning the prototype vectors is 

equivalent to building a SOM. We will detail this process in 

the next section. 

Considering the fact that SOM has been widely used for a 

long time, it is not surprising that there are several variants of 

it. One of the best known variants is the growing SOM 

(GSOM), which (usually) starts with a SOM of size 2x2 and 

then grows it from all cells based on a heuristic criterion [9]. 

In contrast to the conventional case, here, there is no fixed 

shape for the map, in fact it is tailored to the data at hand. 

Another important variant is the hexagonal SOM, in which the 

cells have a hexagonal shape. The distinguishing element of 

this variant is that each cell has six neighbors, not four as is 

the case with square cells. Finally, Kohonen, the inventor of 

SOM, proposed a batch version of SOM [10], which proposes 

to update the prototype vectors only at the end of each 

iteration of the training, whereas in the conventional case they 

are updated after the presentation of each instance. The main 

advantage of this version is that the learning of the prototype 

vectors is independent of the order of the instances. 

As mentioned earlier, Kohonen proposed to randomize the 

initial values for the prototype vectors. In practice, however, 

this results in different final values for the vectors, which in 

turn results in different maps each run of the SOM. Therefore, 

it is necessary to initialize the vectors deterministically. For 

this purpose, the most commonly used initialization method is 

principal component initialization (PCI) [5]. The working 

principle of PCI is as follows. Let 1e and 2e
be the first two 

eigen vectors of the data; and a and b are two real numbers 

such that ba  . Suppose that we have a SOM with m cells 

in the vertical axis and n cells in the horizontal axis and that   

),...,,( b
m

ab
aau

−
+=

 and 

),...,,( b
n

ab
aav

−
+=

are 

two sequences. PCI determines the initial prototype vector of 

the cell with coordinates 
),( ji

as 21 )()( ejveiu +
, where 

)(iu
denotes the i th element of the sequence .u  
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III. SELF-ORGANIZING MAPS  

Let X be a given data matrix consisting of k instances  

with dimension d , thus 
dkX  . Also let  baX :  be a 

submatrix formed by the rows of  X  from the a th row to 

b th row. Our task is to map such instances to a SOM, a grid 

of cells (units) organized as a 2D map. Here, each cell is 

associated with a prototype vector (weight vector) of the 

dimension d , i.e. that of the original input space. Training a 

SOM means learning these vectors, and after the training is 

complete, each instance is matched to a cell with the prototype 

vector closest to it. In the literature, these cells are called as 

Best Matching Units (BMU). 

Conventionally, the prototype vectors are randomly 

initialized and then iteratively updated. In each iteration, an 

instance is picked randomly and its BMU is calculated. Based 

on the BMU, all prototype vectors are updated. For the update 

of the j th prototype vector at iteration )1( +t is as follows: 

))(()()()1( )( twxhttwtw jxjcjj −+=+  ,                (1) 

where )(t denotes the learning rate and 
)(xjch the magnitude 

of the closeness between the j th prototype vector and )(xc , 

the BMU of the randomly picked instance x . In particular, 

 is chosen as a decreasing function of time, and typically 

specified as: 

)exp()( 0  −= tt                                                 (2) 

where 0 is the initial learning rate and 0 is the decay 

rate specified by the user. For )(xjch , it is typically to consider 

the Gaussian neighborhood function: 













 −−
=

2

)(

)(
)(2

exp
t

rr
h

xcj

xjc


                                      (3)    

where jr and )(xcr are the coordinates of the j -th prototype 

vector and the BMU respectively. Here )(t corresponds to 

the width of the neighborhood and decreases over time, and 

the decrease can be calculated using (2) ensuring that 0 is 

replaced by 0 , the initial value for width. The rationale 

behind decreasing  and  over time is to is to reduce the 

effect of updating of prototype vectors over time so that the 

learning process converges. We also note that the underlying 

idea of the update rule given (1) is to draw the prototype 

vectors in proportion to their closeness to the instance of 

interest. 

IV. PROPOSED METHOD 

As mentioned earlier, the initial prototype vectors, i.e. 

),0(jw  ( )nmj  ,...,1 , are determined randomly, which 

leads to instability and slow convergence when learning the 

prototype vectors. To address this problem, we propose the 

following method based on Borda Count (BC). We thus name 

this method as BCI.  

Our method consists of three phases. In the first phase, we 

rank the cells of SOM using BC. Specifically, for a SOM with 

nm cells, we construct a ranking vector for each cell which 

is a permutation of integers from 1 to nm . For the i -th 

cell, this vector is denoted as 
cell

ip whose l -th element is the 

rank of l -th cell for i -th cell, where the ranking is based on 

the closeness to the i -th cell. In the case of a tie, that is, when 

more than one cell is equidistant from the cell of interest, each 

cell is assigned the average rank. For example, for a SOM of 

size 33 , as shown in Figure 2, the ranking vector for the 

first cell is ( )9,5.7,5.5,5.7,4,5.2,5.5,5.2,11 =cellp . 

 
Figure 2: A 3x3 SOM with indices 

BC receives these ranking vectors from all cells as input and 

then outputs the final ranking by summing all vectors and 

sorting the cells based on this sum. For the example above, the 

final ranking of the SOM cells is 

( )9,7,3,1,8,6,4,2,5_ =rankcell . This result reflects the 

original layout of the SOM, in fact the fifth cell is the most 

central cell and therefore comes first in the final ranking. Also, 

the cells with indices 1, 3, 7, and 9 are located in the corners 

of the SOM hence they share the last places in the ranking. 

 In the second phase of the proposed method, we instead 

rank the instances, following much the same procedure used 

for the cells. We thus omit the details of ranking instances 

with BC. As an example, if we rank the G7 countries with BC 

based on the data matrix in Table 1, then the final ranking is 

France, Canada, Italy, UK, Germany, Japan and USA. We 

shall denote the rank associated with the instances as 

rankinst _ . 

 In the final step, we assign the instances to the cells based 

on the (final) ranking of the cells and the instances obtained in 

the previous two phases. For the G7 data, this assignment is 

done as follows: 

Ranking of the instances Ranking of the SOM cells 

France  5 

Canada  2 

Italy  4 

UK  6 

Germany  8 

Japan  1 

USA  3 

  7 

  9 

Finally, the initial prototype vector of a cell is considered to be 

the instance assigned to that cell. For example, the initial 

prototype vector of the fifth cell is [65.4, 83,323.6, 81.4, 
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52721] data vector corresponding to France. If the number of 

instances is less than the number of cells, as in the above 

example, some cells are not matched with any instances. If 

this is the case, we can initialize the prototype vectors 

corresponding to these cells randomly. Normally, however, 

the number of instances is almost always greater than the 

number of cells. Below we explain how to use the proposed 

initialization method if this is the case. 

 Suppose we have k instances and nm  cells, where 

nmk  . In this case we rank the instances and the cells 

using BC, as described above, and then split the instances into 

)/( nmk  chunks, starting with the first instance in the 

ranked list. Each chunk of the instance is then assigned to a 

cell, starting with the first cell in the ranked list of cells. 

Finally, the mean of the instances in the same chunk is 

considered the initial prototype vector for the cell to which the 

chunk is assigned. 

 Here, we provide a pseudocode for  our proposed 

initialization method for SOM. We also note that the notation 

   acts like a ceil operator, returning the smallest integer  

greater than its parameter. 

Algorithm 1: BCI: A Borda Count Based Initialization 

Method for Self-Organizing Maps 

Input: Data matrix:
dkX  , SOM with size nm  

Output: Initial values for the prototype vectors of the SOM: 
d

iw )0(  ( )nmi  ,...,1  

Phase -1: Rank the cells 

1: for i =1: nm  do 

2:       calculate 
cell

ip                    

3: end for 

4: Using 
cell

ip , rank the cells using BC, get rankcell _  

Phase -2: Rank the instances 

5: for i =1: k  do 

6:       calculate 
inst

ip  

7: end for 

8: Using 
inst

ip rank the instances using BC, get rankinst _  

9: Based on rankinst _  replace (shuffle) the rows of X  

Phase -3: The initialization 

11: =c  nmk /                                            (chunk size) 

10: 1=t  

11: for i in rankcell _ : 

12:       ( ) ( )ctctXmeanwi +−= :11)0(  

13         1=+t  

 

V. EXPERIMENTS 

In this section we present the results of a range of 

experiments to verify the efficiency of the proposed method. 

In this sense, we first give the statistics for the datasets used, 

then explain the evaluation criterion, and finally provide the 

results and the related discussion. 

A. The Datasets Used 

 We conducted experiments using different types of UCI 

datasets. The statistics for these datasets can be found in Table 

2. 

 

 

 

 

 
Table 2:  Statistics of the Used UCI Datasets 

 
Dataset Number of instances Number of features 

Abalone 4177 8 

Breast Cancer 569 32 

Ecoli 336 7 

Glass 214 9 

Iris 150 4 

Yeast  1484 8 

Zoo 101 17 

 

B. EVALUATION CRITERION 

Conceptually, Self-Organizing Maps are examples of 

unsupervised learning, where there is no actual truth, i.e., 

classes. Therefore, we cannot simply compare the predictions 

and the actual truths to evaluate the performance of the 

proposed method. Instead, to assess the quality of a SOM, the 

quantization error (QE) is often used. QE measures how well 

the SOM reflects the original feature space, which is basically 

the average of the distances between instances and the 

prototype vectors of the cells to which they are assigned. This 

is calculated as: 

( )
21

1

=

−=
k

i

ii XmX
k

QE                                            (4) 

where iX denotes the i -th instance of , i.e., the i -th row 

and ( )iXm  is the prototype vector of its BMU in the SOM. 

C. RESULTS 

 We compare the results of QE, obtained with the proposed 

BCI, with those obtained with random initialization and PCI. 

When it comes to determine size of the SOM for each dataset 

of interest, we set it to 1010 , resulting in a SOM with 100 

cells, which is less than the number of instances in all the 

datasets used. Table 3 shows the QE results. The best results 

are highlighted for each dataset. We also note that the QE 

values obtained with the random initialization are the average 

of 100 runs for each dataset. 

 
Table 3: The QE Results Obtained with the Random Initialization, 

PCI and BCI 

 
Dataset Random Init.  PCI [4] BCI (Ours) 

Abalone 0.47 0.24 0.27 

Breast Cancer 1.79 0.52 0.47 
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Ecoli 0.47 0.36 0.17 

Glass 0.62 0.36 0.25 

Iris 0.24 0.31 0.04 

Yeast  0.56 0.26 0.21 

Zoo 1.61 1.17 0.19 

 

 

D. DISCUSSIONS  

The immediate conclusion that can be drawn from Table 3 

is that one should not randomly initialize the prototype vectors 

in a SOM. The difference between the QE values from the 

random initialization and from PCI and BCI is significant. In 

fact, for Zoo dataset the QE value is about 8 times higher than 

the value obtained with the proposed method BCI. This means 

that random initialization of prototype vectors in SOM is risky 

and can lead to slow convergence, since it does not yield ideal 

initial values. 

Comparing the state-of-the-art initialization method, PCI, 

and the proposed BCI, it is evident that BCI outperforms PCI 

all datasets except Abalone. The difference between the QE 

scores ranges from 0.05 to 0.98 in favor of BCI. Relying on 

these results, we conclude that the proposed method BCI is a 

powerful initialization method for prototype vectors of SOM 

and can be used for datasets with different number of 

instances and different number of features. 

VI. CONCLUSION 

 

Data visualization has long been of interest not only to data 

scientists, but also to researchers in other fields, because it 

allows for obtaining useful insights from the data at hand. In 

this sense, a range of data visualization methods have been 

developed. Of them, Self-Organizing Maps (SOM) is one of 

the most commonly used methods due to its simplicity and 

efficiency. However, the conventional use of SOM suggests 

initializing the prototype vectors randomly, which may 

ultimately lead to instability and low convergence. 

In this study, we propose a novel method for initializing 

prototype vectors based on Borda Count (BC). Thus, we call 

the proposed method BCI. Basically, BCI first ranks cells of 

SOM and instances separately with BC and then assigns the 

instances to the cells based on these two rankings. Finally, 

BCI calculates the mean of the instances assigned to the same 

cell and then considers this mean value as the initial value for 

the prototype vector of the cell. The experiments conducted on 

seven different UCI datasets confirm the efficiency of BCI and 

show that BCI outperforms both the random initialization and 

PCI, the state-of-the-art initialization method based on PCA. 

Future research will focus on the application of PCI to 

different types of SOM, such as growing SOM (GSOM). 
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