
DECOMPOSITION SCHEMES FOR

MULTICLASS CLASSIFICATION AND

DOMAIN ADAPTATION

Fırat İsmailoğlu

DECOMPOSITION SCHEMES FOR MULTICLASS

CLASSIFICATION AND DOMAIN ADAPTATION

DISSERTATION

to obtain the degree of Doctor at
Maastricht University,

on the authority of the Rector Magnificus,
Prof.dr. Rianne M. Letschert,

in accordance with the decision
of the Board of Deans,

to be defended in public
on Tuesday 26 September 2017 at 16:00 hours

by

Fırat İsmailoğlu

Promotor:
Prof. dr. ir. R. L. M. Peeters

Co-promotor:
Dr. E. N. Smirnov

Assessment Committee:
Prof. dr. ir. J. C. Scholtes (chair)
Dr. ir. K. Driessens
Dr. O. Okun (Cognizant Technology Solutions GmbH)
Prof. dr. M. Pechenizkiy (Eindhoven University of Technology)
Prof. dr. G. Weiss

The research described in this thesis was financially supported by The Republic of
Turkey Ministry of National Education.

ISBN 000-00-0000-000-0
© Fırat İsmailoğlu, 2017.

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronically, mechanically,
photocopying, recording or otherwise, without prior permission of the author.

Contents

Contents � 1

1 Introduction � 3
1.1 Classification � 3
1.2 Binary Classification and Multiclass Classification � 5
1.3 Class Decomposition Schemes � 7
1.4 Reliable Classification � 9
1.5 Domain Adaptation � 10
1.6 Research Questions � 11
1.7 Thesis Overview � 12

2 Background � 13
2.1 Classification Problem � 13
2.2 Class Decomposition Schemes and Coding Matrices � 14
2.3 Solving Multiclass Classification Problems using Class Decomposition

Schemes � 16
2.4 Standard Class Decomposition Schemes � 20

3 Instance-based Decompositions � 27
3.1 Problems and Related Work � 28
3.2 Instance-based Decomposition Schemes � 32
3.3 Error Correction Analysis � 37
3.4 Experiments � 42
3.5 Conclusion � 45

4 Weighted Decoding via Fractional Programming and Bipartite Graph
Partitioning � 46
4.1 Background and Related Work � 47
4.2 Fractional Programming Weighted Decoding � 50
4.3 Bipartite Graph Partitioning Weighted Decoding � 58
4.4 Experiments � 61
4.5 Conclusion � 64

5 Conformal ECOC Machines � 66
5.1 Background � 66

2 Contents

5.2 Conformal Framework � 67
5.3 Conformal Class Decomposition Machines � 69
5.4 Experiments � 76
5.5 Conclusion � 83

6 The Bunching.HDA Algorithm for Heterogeneous Domain Ad-
aptation � 85
6.1 Background � 86
6.2 Related Work � 86
6.3 Problem Formulation � 88
6.4 Bunching Algorithm for Heterogeneous Domain Adaptation � 89
6.5 Experiments � 96
6.6 Conclusion � 103

7 IHC Classification of Breast Cancer Subtypes Using Bunching.HDA
� 108

7.1 Background � 109
7.2 Data Integration and Domain Adaptation in Bioinformatics � 110
7.3 IHC Subtypes of Breast Cancer � 111
7.4 Data Derivation and Pre-processing � 112
7.5 Experiments � 114
7.6 Conclusion � 118

8 Conclusions � 120
8.1 Answers to the Research Questions � 120
8.2 Future Research � 123

References � 125

List of Figures � 133

List of Tables � 135

Publications � 137

About the Author � 138

1
Introduction

This thesis is in the field of machine learning. It presents research on decomposition
schemes for the problem of multiclass classification. In this chapter the problem is briefly
sketched and class decomposition schemes are informally introduced. Four research ques-
tions related to these class decomposition schemes are formulated and emphasized. They
determine the research lines explored in the subsequent chapters.

1.1 Classification

The classification problem is a central problem in machine learning (Mitchell, 1997;
Smirnov, 2001). It deals with objects which may (or may not) have some property in
common, for instance a similar appearance, structure, or function (Smirnov, 2001). In
this way they can be grouped together, to form one or several classes. The objects that
belong to one and the same class are called instances of that class. Usually, the objects
are represented by a number of features, which are somehow correlated with the classes
of the objects and therefore provide information on the classes.

As an example let us consider a hypothetical domain of book sales, where the ob-
jects are the books from a certain publishing house. These books can be unified to form
meaningful classes in different ways, for example by year of publication, or by author, or
by book type (novel, essay, short story, biography). To make this example concrete, let
us restrict attention to just the following two classes: books published in 1995 and books
published in 2015 (i.e., after a significant change in the publishing industry happened, due
to a strong increase in online and electronic publishing). In our terminology this means
that we confine ourselves to instances of books published in 1995, which form the first
class, and those published in 2015 which form the second class.

To handle this domain of book sales by a computer, the instances (the books), are
first represented formally by a set of features that are considered relevant, and which
make them into elements of a space called the feature space. In our example, the relevant
features might be the number of words in the book X1, and the book price X2. The

4 Chapter 1. Introduction

classes require a formal representation as well. Usually this is done by a (output) set of
class labels. In this example of book sales, we can of course work with the two labels
‘1995’ and ‘2015’, but when only two classes are involved one often works with the
labels‘−’ and ‘+’ instead.

Once we have defined the instance space and the class-label set, we can complement
any available book in the instance space with a label of its class. This makes up the train-
ing data we have at our disposal; we will use these data to explore the relationship between
the features and the class-labels and to build classifiers. In Figure 1.1, our training data is
displayed to consist of 22 instances: 8 instances with class label ‘+’ and 14 instances with
class label ‘−’. In the figure, the instances are displayed in a two dimensional instance
space defined by the features X1 and X2.

Figure 1.1: The instance space of the labeled training data, defined by the features X1

(number of words) and X2 (book price). The year of publication 1995 is represented by
the label ‘−’, the year of publication 2015 by the label ‘+’. The solid line shows a linear
decision boundary for an optimal classifier.

Now, assume that we consider a book with a known number of wordsX1 and a known
book priceX2, and we wish to retrieve the unknown year of publication. This provides an
example of the classification problem that in general can be stated as follows. Given a new
query instance (in our case a book described by the features X1 and X2) and an unknown
class-label (the year of publication) the problem is to estimate the true class-label (year of
publication) of the instance, given the training data.

To solve such a classification problem, a classifier is derived from the training data
using a learning algorithm. The learning algorithm searches a hypothesis space for the
classifier that best fits the training data according to a certain fitness criterion. The hy-
pothesis space is typically defined over the classifier parameters or the features of the
instance space. The search strategy and the fitness criterion are specific for the algorithm.
There are many choices possible; the latter explains the abundance of available learning
algorithms in the literature.

Once the classifier is found, it is used for classification; i.e., to estimate the true class
for any query instance. The usual assumptions are that: (1) the training instances and
query instances are all generated independently from each other, and (2) the distribution

1.2. Binary Classification and Multiclass Classification 5

that generates the data is fixed, i.e., it does not vary with the data. The first assumption
allows one to ignore possible dependencies among the instances. This typically reduces
the classifier complexity, as such dependencies need to be modeled by the classifier. The
second assumption, on average, allows for more accurate classification: the training data
and the query instances are generated by the same distribution; the classifier is based on
the training data; and, thus, if an appropriate set of classifiers was searched, the classifier
has a good chance of correctly classifying the query instance.

Getting back to our example for the domain of book sales, we may employ a basic
classifier which belongs to a family of linear functions given by:

θ0 + θ1X1 + θ2X2,

where θ0, θ1 and θ2 are function parameters.

The learning algorithm then searches in the hypothesis space for the best possible
parameter values θ0, θ1, and θ2, taking into account the available training data and op-
timizing a certain fitness function. Once the optimal values are found, we receive the
final classifier. Then, given a new query instance (a book) represented with feature val-
ues x1 (number of words) and x2 (book price), the classifier assigns the class label ‘+’
(publication year 2015) if θ1x1 + θ2x2 + θ0 > 0. Otherwise, it assigns the class la-
bel ‘−’ (publication year 1995). In this example, the classifier imposes a linear decision
boundary, as also shown in Figure 1.1.

1.2 Binary Classification and Multiclass Classification

Depending on the number of classes involved, there are two main types of classification
problems to distinguish. If there are two classes, the classification problem is a binary
classification problem. If the number of classes is larger than two, it is a multiclass
classification problem. An example of a binary classification problem was provided in
the previous section and displayed in Figure 1.1. Other examples include: any (binary)
medical test problem to diagnose the presence or the absence of a disease, any promo-
tional mailing problem to decide whether to send an advertisement or not, any problem of
quality-control with an accompanying binary test (pass/fail), and so on.

Examples of multiclass classification are at least as widespread, though, and concep-
tually and computationally more involved. Figure 1.2a presents ten instances of an optical
character recognition problem: to assign one of the 10 classes (digits) to images of hand-
written text characters. Figure 1.2b presents another multiclass classification problem:
to assign a class from the set {paper, metal, plastic, glass} to waste images in order to
automate the process of waste recycling. Other examples involve: breast cancer subtype

6 Chapter 1. Introduction

classification (see Chapter 7), document categorization in text mining, speaker recogni-
tion in speech processing, and so on.

(a) Multiclass classification of handwritten digits.

(b) Multiclass classification of waste.

Figure 1.2: Multiclass classification examples.

The classifiers trained for binary classification problems are called binary classifiers.
The classifiers trained for multiclass classification problems are called multiclass classi-
fiers. Conceptually, binary classifiers are simpler than multiclass classifiers. In the worst
case, a multiclass classifier for K classes may have to build K(K−1)/2 decision bound-
aries: one for each distinct pair of two classes. This explains why binary classifiers were
extensively studied in the literature first. Among the most prominent binary classifiers
that are worth mentioning, are linear discriminant analysis classifiers (Mitchell, 1978),
the perceptron (Duda et al., 2000), logistic regression classifiers (Duda et al., 2000), ver-
sion spaces (Mitchell, 1978), and support vector machines (Cortes and Vapnik, 1995).

Multiclass classifiers are usually more complex and have several different types. These
types are usually divided into two groups: directly implementable multiclass classifiers
and indirectly implementable multiclass classifiers (Dietterich and Bakiri, 1995). The
classifiers in the first group are actually single classifiers that build all of the decision
boundaries needed. Some of the classifiers in this group can be viewed as adaptations of
binary classifiers such as support vector machines (Hsu and Chih-Jen, 2002) and Ripper
decision rules (Cohen and Singer, 1996). Nevertheless, a vast majority of the classifiers in
this group can handle multiclass classification problems without a need for an adaptation.
Examples include: nearest neighbor classifiers (Duda et al., 2000), naive Bayes classifiers
(Domingos and Pazzani, 1997), decision trees (Quinlan, 1986), etc.

The indirectly implementable multiclass classifiers are built using class decomposi-
tion schemes (Dietterich and Bakiri, 1995). Any class decomposition scheme considers

1.3. Class Decomposition Schemes 7

a multiclass classification problem to consist of a set of binary classification problems.
Then a binary classifier is built for each binary classification problem in that set (using
a binary classification algorithm). The final multiclass classifier consists of several bin-
ary classifiers (in contrast to the directly implementable multiclass classifiers). When a
query instance is provided, the class label for the instance is estimated according to some
classification rule that combines the outputs of those binary classifiers.

This thesis focuses on the indirectly implementable multiclass classifiers and class
decomposition schemes. The next section provides a more detailed description of this
topic.

1.3 Class Decomposition Schemes

As stated above, any class decomposition scheme considers a multiclass classification
problem as a set of binary classification problems (Smirnov et al., 2009). These binary
classification problems are represented by binary class partitions. If there are K classes,
each such binary class partition assigns them to two disjoint families of classes: the classes
in the first family (the first element of the binary partition) form a positive binary class
and the classes in the second familiy (the second element of the binary partition) form
a negative binary class. A class decomposition scheme is a collection of binary class
partitions, such that any two classes (from the multiclass classification problem) can be
uniquely determined from the scheme. I.e., there exists at least one partition (binary
classification problem) for which the two classes belong to different binary classes of the
partition.

Any class decomposition scheme can be represented by a coding matrix (Smirnov
et al., 2009). The rows of the coding matrix correspond to the classes and the columns
correspond to the binary class partitions. If a class is a member of a positive (negative)
binary class of a binary class partition, the binary value of 1 (0) is assigned to the matrix
element indicated by the class row and partition column. As an example, Figure 1.3
provides the coding matrix of an exhaustive class decomposition scheme for four-class
problems (i.e., K = 4).

Each row in a coding matrix is considered as the code word of the corresponding class.
Each column of a coding matrix is considered as the code word of the corresponding
binary class partition. It will be clarified later that for several purposes it is important that
the class code words and the partition code words have to be well separated.

8 Chapter 1. Introduction

Figure 1.3: An exhaustive coding matrix for four-class problems.

To solve a multiclass classification problem using a class decomposition scheme we
generally take three steps. First, we train binary classifiers, one for each binary class
partition (binary classification problem). Second, we encode a query instance using these
classifiers; i.e., we create an ‘instance code word’ consisting of bits (binary class labels)
assigned by the binary classifiers for that instance. Third, we decode the class of the
instance using the coding matrix of the class decomposition scheme used. We assign a
class which code word matches best with the instance code word of the query instance.

We note that, in the third step, decoding the class of a query instance may correct a
limited number of errors made by the binary classifiers. Therefore, even though some
of the binary classifiers may misclassify a query instance, together they may still match
the instance to its true class. This error-correcting capability increases the generalization
performance of multiclass classifiers that employ a class decomposition scheme.

The classification process in step 3 of the class decomposition scheme approach (de-
scribed above) builds on the assumption that the instance code words in step 2 are as true
as possible (Escalera et al., 2008; Pujol et al., 2006). The correctness of instance code
words depends on the accuracy of the binary classifiers trained for the binary classifica-
tion problems defined by the coding matrix. Some of these binary classification problems
can be relatively simple, but some may also be difficult: this depends on the application
and the binary class partition. Difficult problems imply less accurate binary classifiers
and thus less correct instance code words. The latter can result in instance misclassifica-
tion. Thus, it is important to solve the problem of difficult binary classification problems
in order to boost the generalization performance of multiclass classification.

There exist several approaches to this problem of difficult binary classification prob-
lems in decomposing multiclass classification problems (Hatemi, 2012; Escalera and Pu-
jol, 2006; Marom et al., 2010; Escalera et al., 2008; Smith and Windeatt, 2010; Zor et al.,
2010; Pujol et al., 2006). They are based on a search for coding matrices whose columns
represent relatively simple classification problems. These approaches are divided in two
groups: (1) those that adapt a given coding matrix to the data at hand (Hatemi, 2012;
Escalera and Pujol, 2006; Marom et al., 2010; Escalera et al., 2008; Smith and Windeatt,
2010; Zor et al., 2010); and (2) those that learn the coding matrices from the data (Pujol

1.4. Reliable Classification 9

et al., 2006). The reported experiments show that the approaches in both groups can be
successful.

Another problem that is less obvious, is the problem of error dependency of the bin-
ary classifiers (Kuncheva and Whitaker, 2003a). When this problem becomes acute, the
variance in the number of incorrect bits in instance code words increases. This means
that error-correcting works less well and instance code words with errors are more prone
to instance misclassification. We note that the problem of error dependency of the binary
classifiers can occur even when the problem of difficult binary classification problems is
not present.

The problem of error dependency of the binary classifiers was addressed in (Kuncheva
and Whitaker, 2003a; Zhang et al., 2009; Liu et al., 2015; Furnkranz and Park, 2012). The
approaches to avoid this problem can be divided into two groups. The first group includes
approaches that reduce the error dependency by learning coding matrices from the data –
as in the case of having difficult binary classification problems (Kuncheva and Whitaker,
2003a; Zhang et al., 2009). The second group includes approaches that reduce the error
dependency when training the binary classifiers (Liu et al., 2015; Furnkranz and Park,
2012). The reported experiments show that the approaches in both groups are capable of
boosting the generalization performance.

Studying the problem of difficult binary classification problems and the problem of
error dependency of binary classifiers, led us to consider two other fields of machine
learning as well: reliable classification and domain adaptation. In the next two sections,
we briefly describe these two fields then relate them to class decomposition schemes.

1.4 Reliable Classification

Reliable classification essentially addresses classification problems where, in addition to
estimating a class label for a query instance, one also aims to determine a confidence
estimate for that label (Vovk et al., 2005). This is important if one needs to know to
what extent one can rely on the predicted class labels, e.g., for decision making. Pos-
sible applications are usually risk-sensitive applications such as drug discovery, medical
diagnosis, financial analysis (Papadopoulos et al., 2011), etc.

The framework for reliable classification that we study in this thesis in combination
with class decomposition schemes is the conformal framework (Vovk et al., 2005). The
conformal framework allows for computing the p-value for a class label assigned to a
query instance as follows. First, it estimates the nonconformity (‘unusualness’) score for
the query instance with that class label with respect to all the training instances. Then,
it computes the p-value for this class-label as the proportion of the training instances of
which the nonconformity scores are larger than or equal to that of the query instance. The
computed p-values are then used for quantifying confidence of the classifier.

10 Chapter 1. Introduction

The validity of the conformal framework has been theoretically proven. It can be
applied for any type of classifier (Vovk et al., 2005): nearest neighbors (Papadopoulos
et al., 2011), SVM (Shi et al., 2013), neural networks (Papadopoulos, 2008), etc. In
addition, the conformal framework can be used in the online mode and in the offline
mode of training (Balasubramanian et al., 2014).

Despite the importance of the conformal framework for reliable (multiclass) classi-
fication, it was implemented for two types of class decomposition schemes only (Vovk
et al., 2005; Shi et al., 2013). While being valid, these implementations suffer from being
computationally inefficient. For this reason it is important to make class decomposition
schemes computationally efficient for conformal classification, especially for practical
applications.

1.5 Domain Adaptation

Domain adaptation, in the context of classification, addresses the problem of training clas-
sifiers when we are given a limited amount of labeled instances from a domain of interest
(Wang and Mahadevan, 2011). If there exist similar domains that are abundant in labeled
data, the key idea is to adapt these domains (i.e., their data), to derive better classifiers for
the primary domain of interest. There exist several domain adaptation methods; some of
them have been successfully employed in various applications, such as sentiment analysis
(Blitzer et al. (2007)), computer vision ((Duan et al., 2010)), game playing ((Banerjee and
Stone, 2007)), etc.

In the field of domain adaptation, the domain of interest is called the target domain and
the provided auxiliary domains are called source domains. In the literature, research has
mainly focused on homogeneous domain adaptation, where the target and source domains
share the same instance space (Wu and Dietterich, 2004; Saenko et al., 2010; Hall, 2004).
The observed differences between the domains arises due to the difference in the data
distribution (Pan and Yang, 2010; Wang and Mahadevan, 2011), but the recorded features
are the same. However, many real-world scenarios, like classifying images exploiting
given tagged text, or classifying PET scans using MR images, require more advanced
methods to adapt domains with totally different instance spaces. This gives rise to a
relatively new research subfield, called heterogeneous domain adaptation which will also
be of interest to us in this thesis.

The approaches to heterogeneous domain adaptation can be divided into two groups
(Weiss et al., 2016). The first group consists of symmetric approaches (Wang and Ma-
hadevan, 2011; Shi et al., 2010; Duan et al., 2012). These approaches transform the target
and source domains into a common latent feature space. First, the target data and source
data are projected into a common space and then the final classifiers are trained on the
projected data. The second group consists of asymmetric approaches (Kulis et al., 2011;

1.6. Research Questions 11

Zhou et al., 2014). These approaches transform the source domain directly into the target
domain. The classifiers are then trained on the target data and the projected source data
jointly.

Despite the recent progress in heterogeneous domain adaptation, class decomposi-
tion schemes in heterogeneous domain adaptation have not yet been exploited, especially
in the context of symmetric approaches. Hence several benefits that the decomposition
schemes could bring when adapting the domains, such as error-correction, have not been
utilized. This motivated us to use class decomposition schemes for heterogeneous domain
adaptation.

1.6 Research Questions

In the previous three sections, we have discussed and argued that the further development
of class decomposition schemes can follow two research lines:

(1) improving class decomposition schemes to boost the generalization performance of
multiclass classifiers, and

(2) extending class decomposition schemes for new application fields such as reliable
classification and heterogeneous domain adaptation.

The research questions of this thesis are formulated along these lines. The first two
questions are related to the first research line and they read as follows:

(Q1) How can the problem of difficult binary classification problems be solved?

(Q2) How can the problem of error dependency of binary classifiers be solved?

As indicated previously, questions Q1 and Q2 are known in class decomposition re-
search. The contribution of this thesis lies in improving existing approaches and studying
new decomposition schemes that have a conceptually different basis.

The next two questions are related to the second research line and they read as follows:

(Q3) How to improve the computational performance of class decomposition schemes
for reliable classification?

(Q4) How to apply class decomposition schemes for heterogeneous domain adaptation?

Questions Q3 and Q4 aim at bringing the class decomposition schemes beyond stand-
ard usage. This makes the thesis rather different compared to earlier work on class de-
composition schemes.

12 Chapter 1. Introduction

1.7 Thesis Overview

The remainder of this thesis is divided into seven chapters briefly described below.
In Chapter 2 we provide a background on class decomposition schemes. We first

formalize the classification problem and introduce class decomposition schemes. Then,
we explain the class decomposition classification process and provide an overview of
some standard class decomposition schemes.

In Chapters 3 and 4 we address the research questions related to the difficult binary
classification problems and error dependency of binary classifiers. In Chapter 3 we pro-
pose instance decomposition schemes as an alternative to class decomposition schemes.
We first define the new scheme and analyze its error-correction properties. Then, we
provide experiments and conclusions. In Chapter 4, we approach to the problem of dif-
ficult binary classification problems from the perspective of weighted decoding where
the binary classifiers are weighted, based on their generalization performances. In this
respect we propose two novel weighted decoding algorithms: Fractional Programming
Weighted decoding and Bipartite Graph Partitioning Weighted decoding. Having intro-
duced these decoding algorithms, we then compare these algorithms with two-state-of
the-art weighted decoding algorithms.

In Chapter 5 we address the research question related to improving the computa-
tional performance of class decomposition schemes for reliable classification. We pro-
pose two new implementations for conformal classification that are computationally ef-
ficient namely mean-based conformal class decomposition machines and Poisson con-
formal class decomposition machines. We first describe both machines, and, then, provide
experiments and conclusions.

In Chapter 6 we address the research question of how to apply the class decomposition
schemes for heterogeneous domain adaptation. We propose Bunching.HDA as a new
symmetric heterogeneous-domain-adaptation algorithm based on the class decomposition
scheme. We first describe the algorithm, and, then, provide experiments and conclusions.

In Chapter 7 we consider the problem of classifying breast cancer instances accord-
ing to their immunohistochemistry subtypes. We propose to consider this problem in the
context of the heterogeneous domain adaptation. We present the whole study of apply-
ing the Bunching.HDA algorithm to this problem: data derivation, data preprocessing,
experiments, and conclusions.

In Chapter 8 we first summarize our answers the four research questions stated in this
Chapter. Then, we complete the thesis by pointing out future research directions.

2
Background

This chapter provides background information on class decomposition schemes. Sec-
tion 2.1 presents terminology used throughout this thesis and formalizes the classification
problem. Section 2.2 introduces class decomposition schemes and coding matrices. The
classification process based on class decomposition schemes is described in Section 2.3.
Section 2.4 provides an overview of the class decomposition schemes employed in this
thesis.

2.1 Classification Problem

Let X be an input space with r features X(r) (r ∈ {1, . . . , R}) and Y be a finite out-
put set of K class labels. We assume an unknown probability distribution p defined over
X × Y . Training data D is a multi-set of N labeled instances (xn, yn) ∈ X × Y gen-
erated independently from p (i.e., D is drawn iid from p). Given the training data D, the
classification problem is to provide a good estimate ŷ ∈ Y of the true class of a query
instance xq ∈ X according to the probability distribution p.

To solve a classification problem we train a classifier on the data available using a
learning algorithm. A classifier predicts a class for any query instance xq ∈ X . We note
that there exist two types of classifier: discrete and scoring. A discrete classifier is a
function f : X → Y . It outputs the estimated class label of the query instance. A scoring
classifier is a function f : X → [0,+∞)K . It assigns a positive score s ∈ [0,∞) for each
label in the class label set for the query instance. The class label with the highest score is
usually picked as the final class prediction.

Depending on the size K of the class label set Y we consider two types of the classi-
fication problems. If K is equal to 2, the classification problem is a binary classification
problem (BCP). If K is greater than 2, the classification problem is a multiclass classific-
ation problem (MCP). The classifiers trained for binary classification problems are called
binary classifiers. The classifiers trained for multiclass classification problems are called
multiclass classifiers.

14 Chapter 2. Background

To make a compatible notation for binary discrete classifiers and binary scoring classi-
fiers throughout this thesis we assume that any binary scoring classifier f outputs for any
query instance xq only one score f(xq) in the range of [0, 1]. This score is the normalized
score for the positive class which implies that the normalized score for the negative class
is 1− f(xq).

2.2 Class Decomposition Schemes and Coding Matrices

Consider a multiclass classification problem MCP defined over a class label set Y of
size K > 2. To decompose MCP into B binary classification problems BCPb (b ∈
{1, . . . , B}) we need to define these problems so that the binary class labels allow us
to code any class y ∈ Y (Smirnov et al., 2009). The class label set Yb of any binary
classification problem BCPb can be represented by a binary class partition Pb over the
class label set Y .

Definition 1. (Binary Class Partition) Given a class label set Y and an integer b ∈
{1, . . . , B}, the set Pb(Y) is a binary class partition of Y if and only if Pb(Y) consists of
two non-empty sets Y −b and Y +

b such that Y −b ∩ Y
+
b = ∅ and Y −b ∪ Y

+
b = Y .

Since the sets Y −b and Y +
b are non-empty, they have their own meaning derived from

the meaning of the classes they combine. Thus, without loss of generality we consider the
set Y −b as a negative super class and the set Y +

b as a positive super class for the binary
classification problem BCPb.

Notation 1. (Super Class Labels) The negative super class Y −b is denoted by the label
0. The positive super class Y +

b is denoted by the label 1. The class label set of a binary
classification problem BCPb is denoted by Yb.

Using Definition 1 we introduce the notion of a class decomposition scheme (Smirnov
et al., 2009).

Definition 2. (Class Decomposition Schemes) Given a multiclass classification problem
MCP and a positive integerB > 0, a class decomposition scheme of MCP is a set SP (Y)

of B binary class partitions Pb(Y) with b ∈ {1, ..., B} such that for any two classes
y1, y2 ∈ Y there exists a binary class partition Pb(Y) ∈ SP (Y) which super classes Y −b
and Y +

b separate y1 and y2; i.e. ¬(y1, y2 ∈ Y −b) ∧ ¬(y1, y2 ∈ Y +
b).

According to Definition 2 for any class y ∈ Y the set of super classes Y −b and Y +
b

that include y over all b ∈ {1, ..., B} is unique for that class. When this property holds, a
set of binary class partitions is a class decomposition scheme.

Any class decomposition scheme SP (Y) is typically represented by a coding matrix
M (Dietterich and Bakiri, 1995). The matrix M is defined as a binary matrix of form
{0, 1}K×B whose entries M(y, b) are defined according to the following rule:

2.2. Class Decomposition Schemes and Coding Matrices 15

M(y, b) =

{
0, if class y ∈ Y belongs to Y −b of Pb(Y);

1, if class y ∈ Y belongs to Y +
b of Pb(Y).

Any class label y ∈ Y is represented by exactly one row M(y, ·) of M . We call this
row code word for the class y. Any binary class partition Pb(Y) is represented by exactly
one column M(·, b) of M . We call this column code word for the binary class partition
Pb(Y).

Class code words M(y, ·) can be viewed as images of the classes y ∈ Y in a code
space. The code space plays an essential role in multi class classification using class
decomposition schemes. It is formally defined below.

Definition 3. (Code Space) Given a class decomposition scheme SP (Y) with B parti-
tions Pb(Y), the code space C is equal to [0, 1]B .

Since any coding matrix M represents a class decomposition scheme, it has to satisfy
four properties. Below we introduce these decomposition-induced properties and show
how they can be logically derived using Definition 2.

1. Row Uniqueness. This property states that the rows M(y, ·) of the matrix M have
to be unique. Consider an arbitrary class y1 ∈ Y . According to Definition 2 for
any other class y2 ∈ Y there exists a binary class partition Pb(Y) ∈ SP (Y) s.t.
¬(y1, y2 ∈ Y −b) ∧ ¬(y1, y2 ∈ Y +

b). This implies that for these two classes the
associated rows M(y1, ·) and M(y2, ·) are different at least at position b. Thus, the
row M(y1, ·) of class y1 is unique, and, since y1 is arbitrarily chosen, the property
holds for any class y ∈ Y .

2. Column Uniqueness. This property states that the columnsM(·, b) of the matrixM
have to be unique. It follows directly from Definition 2. According to the definition
the class decomposition scheme SP (Y) is a set which implies that binary class
partitions Pb(Y) ∈ SP (Y) are different. Thus, the columns M(·, b) of M that
correspond to different Pb(Y) are different as well.

3. Column Heterogeneity. This property states that any column has to have at least
one 1 and least one 0. It can be proven as follows. According to Definition 2
any column M(·, b) represents a class partition Pb(Y). According to Definition 1
Pb(Y) consists of non-empty sets Y −b and Y +

b . Thus, M(·, b) has to have at least
one 1 and least one 0.

4. Column Nonequivalency. This property states that any two columns of M cannot
complement each other. It can be proven by contradiction. Assume that the columns
indexed by b1, b2 ∈ {1, ..., B} are complementary. This implies that ∀y ∈ Y ,
M(y, b1) +M(y, b2) = 1. Thus,

16 Chapter 2. Background

Y +
b1

= {y ∈ Y |M(y, b1) = 1}
= {y ∈ Y | 1−M(y, b2) = 1}
= {y ∈ Y |M(y, b2) = 0}
= Y −b2 .

Analogously, we can prove that Y −b1 equals Y +
b2

. Thus, Pb1(Y) = {Y +
b1
, Y −b1 } =

{Y −b2 , Y
+
b2
} = Pb2(Y). The latter contradicts with Definition 2, since the class

decomposition scheme SP (Y) is set and it cannot contain two identical elements,
i.e. binary class partitions.

In the rest of the thesis class decomposition schemes are presented mainly with coding
matrices. So, we use the notions of class decomposition schemes and code matrices
interchangeably.

2.3 Solving Multiclass Classification Problems using Class
Decomposition Schemes

To solve a multiclass classification problem using a class decomposition scheme we fol-
low three steps. First, we train a set of binary classifiers that correspond to that scheme.
Then, we encode a query instance using those classifiers. Finally, we decode the class
of the instance using the coding matrix of the class decomposition scheme used; i.e., we
receive the final class estimate. This section describes formally all the three steps irre-
spective the types of the class decomposition schemes.

2.3.1 Training Binary Classifiers

To train binary classifiers we need to define B binary classification problems BCPb ac-
cording to the class decomposition scheme SP (Y) provided. For any b ∈ {1, ..., B} the
binary classification problem BCPb is defined in the input space X and the class label
set Yb. The binary training data set Db is constructed from the training data set D us-
ing the coding matrix M of SP (Y): any instance (x, y) ∈ D is transformed to a new
instance (x,M(y, b)) ∈ Db. We note that Db is drawn iid from X × Yb, since Y −b and
Y +
b ∈ SPb(Y) are super classes that combine the classes of Y and the data D is drawn

iid from X × Y .
Once the binary classification problems have been defined, we train binary classifiers

fb (b ∈ {1..B}) by means of a given classification algorithm . These classifiers form an

2.3. Solving Multiclass Classification Problems using Class Decomposition Schemes 17

ensemble classifier f : X → Y equal to {fb}Bb=1, given a classification rule for the coding
matrix M (see class decoding function in Subsection 2.3.3).

2.3.2 Encoding

Once a query instance xq is provided, it is encoded in the code space C. For that purpose,
the binary classifiers fb output class estimations fb(xq) and then the vector of these es-
timations forms an image of xq in the code space C. Formally, the encoding step is given
with a function defined below.

Definition 4. (Encoding Function) Encoding function f is a function from X to C that
maps an instance x ∈ X to:

(f1(x), ..., fB(x)).

Given a query instance xq , the code f(xq) is called the code word of that instance.
We note that instance code words and class code words live in the same code space C.
Based on their match the final class estimation is determined (via decoding explained the
next Subsection).

2.3.3 Decoding

Once the code word f(xq) of the query instance xq is formed, it is decoded to the class
y ∈ Y which associated class code word M(y, ·) is nearest to f(xq) according to some
distance measure dist defined on C. This class becomes the class estimation of the instance
xq . Formally, decoding is achieved using a function defined below.

Definition 5. (Decoding Function) Decoding function g is a function from C to 2Y that
maps the code word f(x) of an instance x ∈ X to:

argmin
y∈Y

dist (f(x),M (y, ·)) ,

where dist is a distance measure on C.

Given a query instance xq , the decoding function g outputs a subset of classes y ∈ Y
whose code words are nearest to the instance code word f(xq). The final class estimate
for xq is chosen randomly from the classes in g(f(xq)).

Below Figure 2.1 illustrates the coding and decoding phases guided by the coding
matrix M .

18 Chapter 2. Background

Figure 2.1: An illustration of the coding and decoding phases. An query instance
xq from the input space X is first encoded into the code word f(xq) equal to
(f1(xq), . . . , fB(xq)). Then, f(xq) is compared to each class code word of the coding
matrix M . Finally, the class of xq is decoded equal to the class with code word nearest to
f(xq).

The classification process through decoding assumes that the instance code words are
as correct as possible. The correctness of instance code words depends directly on the ac-
curacy of the binary classifiers. The latter depends on the binary classification problems
defined by the coding matrix M . Some of these problems can be relatively simple and
some of these problems can be relatively difficult (see Section 3.1 for a detailed explan-
ation). The difficult problems imply less precise binary classifiers and thus less correct
instance code words. The latter can result in misclassification. Thus, it is important to
handle the problem of difficult binary classification problems in order to boost the gener-
alization performance of multi class classification.

Another problem to solve that is not so obvious is the problem of error dependency
of the binary classifiers. When this problem becomes acute, the number of incorrect bit
estimations in instance code words increases. This means that the instance code words
become less correct which can result in misclassification. We note that the problem of
error dependency of the binary classifiers can occur when the problem of difficult binary
classification problems is not well present as soon as we have good binary classifiers that
have a tendency to err simultaneously.

2.3.4 Separation Properties of Coding Matrices

Separation properties determine when a coding matrix results in an ensemble of bin-
ary classifiers that potentially has a good generalization performance. There exist two

2.3. Solving Multiclass Classification Problems using Class Decomposition Schemes 19

separation properties: the row-separation property and the column-separation property
(Dietterich and Bakiri, 1995). Below we explain these properties in detail.

• Row separation. This property states that for any class y1 ∈ Y the code word
M(y1, ·) in a coding matrix M has to be well-separated (distant) from the code
word M(y2, ·) of any other class y2 ∈ Y \ {y1}. Since the code words M(y1, ·)
and M(y2, ·) are the images of the classes y1 and y2 ∈ Y in the code space C,
the row-separation property indicates how far the images of the classes in Y are
in C. Given a query instance xq with true class yq , a large row separation allows
increasing the number of binary classifiers fb with loss |fb(xq)−M(yq, b)| greater
than 0.5 so that the class of the instance is correctly decoded. This means that
the row-separation property counteracts the difficult binary classification problems
and error dependency of the binary classifiers, and, thus, it plays an important role
for the generalization performance of the ensembles based on class decomposition
schemes.

The row-separation capacity of a coding matrix is usually quantified using the min-
imum Hamming distance Rm between any pair of matrix’s rows. We note that
the Hamming distance is employed due to the binary nature of the coding matrix.
When the binary classifiers are discrete, the minimum Hamming distance Rm of a
coding matrix is used to compute the correction number CN . CN equals bRm−12 c
and it represents the number of misclassifying binary classifiers which still results
in correct classification. Since the row separation is related the problem of difficult
binary classification problems and the problem of error dependency of the binary
classifiers, the minimum Hamming distance Rm and the correction number CN
are used to quantify the ability of the coding matrix (class decomposition scheme)
to solve these problems.

• Column separation. This property states that for any b1 ∈ {1, . . . , B} the parti-
tion code word M(·, b1) in a coding matrix M has to be well-separated (distant)
from the partition code word M(·, b2) and its complement for any other b2 ∈
{1, . . . , B} \ {b1}. In this way, binary classification problems BCPb become more
different in terms of their super classes which in turn makes the binary classifiers
fb more diverse. The diversity of the binary classifiers fb makes them more error-
independent (Dietterich and Bakiri, 1995); i.e., it is less often that the classifiers
commit the errors simultaneously. This can significantly decreases the distance to
the true class during query-instance decoding which boosts the generalization per-
formance of the ensembles based on class decomposition schemes.

The column separation property of a coding matrix is usually quantified using the
minimum Hamming distance Cm between any pair of its columns. The higher the

20 Chapter 2. Background

distance Cm is, the more diversity and less error dependency we observe for the
binary classifiers fb. Thus, the minimum Hamming distance Cm can be used as a
second measure to quantify the ability of the coding matrix to solve the problem of
error dependency of the binary classifiers.

2.4 Standard Class Decomposition Schemes

There exist several standard class decomposition schemes. Of these, this section considers
class decomposition schemes based on one-vs-all matrices (Rifkin and Klautau, 2004) and
error-correcting output codes (Dietterich and Bakiri, 1995; Smirnov et al., 2009) which
are used in the remainder of this thesis.

2.4.1 One-vs-All Class Decomposition Scheme

A one-vs-all class decomposition scheme is a scheme with a coding matrix M of type
{0, 1}K×K such that for any class y ∈ Y there exists a column with index b ∈ {1, ...,K}
for which the condition M(y, b) holds only for class y. Formally,

(∀y ∈ Y)(∃b ∈ {1, ...,K})(M(y, b) = 1 ∧ (∀y′ ∈ Y \ {y})M(y′, b) = 0).

Figure 2.2 provides an example of the one-vs-all coding matrix M for four classes.
The matrix is a diagonal matrix. Hence, four binary classification problems are generated
such that in each problem we discriminate the instances of one class against the instances
of the other three classes. Following the example Figure 2.3 shows a decision boundary
induced by a classifier trained for one of the four binary classification problems.

Decoding the class of a query instance is performed according to the decoding func-
tion provided in Definition 5. The distance function for one-vs-all is defined below.

Definition 6. (One-vs-all Distance Function) One-vs-all distance function distOA is a
function from C ×C to [0, 1] that maps the code word f(x) for an instance x ∈ X and the
code word M(y, ·) of a class y ∈ Y to:

1− f(x) ·M(y, ·).

Given a query instance xq , the value of f(xq) ·M(y, ·) is equal to the value of fb(xq);
i.e. the outcome of the binary classifier fb for class y ∈ Y with index b ∈ {1, ...,K} in
the coding matrix M . It can be viewed as a similarity between the instance code word
f(xq) and class code word M(y, ·). This means that the value of 1− f(xq) is a distance
between these words. Therefore, according to Definition 5 the classification (decoding)

2.4. Standard Class Decomposition Schemes 21

rule of one-vs-all class decomposition schemes is to assign that class y ∈ Y to a query
instance xq ∈ X that minimizes the distance 1− fb(xq).

The one-vs-all coding matrices grow linearly with the number of classes. Since the
number B of binary classifiers equals the number K of classes, they result in computa-
tionally efficient ensembles. However, the separation properties, the row-separation and
column-separation properties, are poorly represented. The minimal row Hamming dis-
tance Rm equals 2 and, thus, the correction number CN equals 0. The minimal column
Hamming distance Cm equals 2. Therefore, the one-vs-all class decomposition schemes
are often outperformed by other types of class decomposition schemes. However,, it was
shown in (Rifkin and Klautau, 2004)) that if the binary classifiers are scoring classifiers
and they are properly tuned, the one-vs-all ensembles have a good generalization per-
formance.

Figure 2.2: One-vs-all coding matrix for 4 classes.

Figure 2.3: A decision boundary of a classifier trained for one of the binary classification
problems defined by the four-class one-vs-all coding matrix.

2.4.2 Class Decomposition Schemes of Error-Correcting Output Codes

The class decomposition schemes of error-correcting output codes (ECOC) employ re-
dundancy in the class code words to boost the generalization performance of the final
ensembles (Dietterich and Bakiri, 1995). In the present subsection, first we consider three
basic types of ECOC schemes and then provide the decoding procedures applied for dis-

22 Chapter 2. Background

crete and scoring binary classifiers.

Basic Types of ECOC Schemes

The ECOC class decomposition schemes differ in coding matrices they employ. We ahall
consider two coding matrices in this type:exhaustive error-correcting output codes (eE-
COC) (Dietterich and Bakiri, 1995) and minimal error-correcting output codes (mECOC)
(Smirnov et al., 2009). Then, we consider decomposition schemes of random error-
correcting output codes (rECOC) as a intermediate type between these two schemes (Di-
etterich and Bakiri, 1995).

A. Class Decomposition Schemes of Exhaustive Error-Correcting Output Codes

A class decomposition scheme of exhaustive error-correcting output codes (eE-
COC) is a scheme with a coding matrix M of type {0, 1}K×(2

K−1−1) in which
for any proper and nonempty subset Y ′ ⊂ Y there exists a column with index
b ∈ {1, ..., 2K−1−1} such that for any class y′ ∈ Y ′ and any other class y′′ ∈ Y \Y ′

the condition M(y′, b) differs from the condition M(y′′, b). Formally,

(∀Y ′ ∈ 2Y \{∅, Y })(∃b ∈ {1, ..., B})(∀y ∈ Y ′)(∀y′′ ∈ Y \Y ′)M(y′, b) 6= M(y′′, b).

Figure 2.4 provides an example of the eECOC coding matrix M for four classes.
Seven binary classification problems are generated so that in each problem we dis-
criminate a class subset Y ′ against the complement Y \Y ′. Following the example
Figure 2.5 shows a decision boundary induced by a classifier trained for the fifth
binary classification problem, i.e. BCP5.

Figure 2.4: eECOC coding matrix for 4 classes.

2.4. Standard Class Decomposition Schemes 23

Figure 2.5: A decision boundary of a classifier trained for the fifth binary classification
problem from the eECOC coding matrix from Figure 2.4.

The number of columns in the eECOC coding matrices equals 2K−1 − 1; i.e., it
is exponential in the number of classes. This implies that the number of binary
classification problems and number binary classifiers are exponential in K. As
a result the ensembles based on eECOC coding matrices can be computationally
inefficient. Because of that (Dietterich and Bakiri, 1995) advised to use the eECOC
class decomposition schemes for no more than seven classes.

The separation properties of the eECOC coding matrices, the row-separation and
column-separation properties, are very different compared to one-vs-all (Dietterich
and Bakiri, 1995). The row minimum Hamming distance Rm is equal to 2K−2 and
the correction number CN is equal to b 2

K−2−1
2 c. Thus, the class code words are

quite distant in the code space C and the row-separation property is well represen-
ted. However, the column minimum Hamming distance Cm is equal to 1. Thus,
the column-separation property is poorly represented which can make some of the
binary classifiers more error dependent (Dietterich and Bakiri, 1995). Neverthe-
less, the ensembles based on eECOC coding matrices exhibit a good generalization
performance, since the error dependence can be suppressed by the large amount of
binary classifiers, especially for large K.

B. Class Decomposition Schemes of Minimal Error-Correcting Output Codes

A class decomposition scheme of minimal error-correcting output codes (mECOC)
is a scheme with a coding matrix M of type {0, 1}K×dlog2(K)e (Smirnov et al.,
2009). It is minimal in the sense that there is no matrix with smaller number of
columns that represents a class decomposition scheme.

Figure 2.6 provides an example of the mECOC coding matrix M for four classes.
Two binary classification problems are generated so that in each problem we dis-
criminate a class subset Y ′ of size 2 against the complement Y \ Y ′ of size 2 as

24 Chapter 2. Background

well. Following the example, Figure 2.7 shows a decision boundary induced by a
classifier trained for one of the two binary classification problems.

Figure 2.6: mECOC coding matrix for 4 classes.

Figure 2.7: A decision boundary of a classifier trained for the second binary classification
problem from the mECOC coding matrix from Figure 2.6.

The number of columns in the mECOC coding matrices equals dlog2(K)e; i.e., it
grows logarithmically with the number of classes. This implies that the number of
binary classification problems and number binary classifiers are logarithmic in K.
As a result, the ensembles based on mECOC coding matrices are the most compu-
tationally efficient and, thus, they can be used for very large number of classes.

The separation properties of the mECOC coding matrices, the row-separation and
column-separation properties, are very poor. The row minimum Hamming distance
Rm is equal to 1 and the correction number CN is equal to 0. This means that the
class code words can be very close to one another in the code space C and, thus,
the row-separation property is poorly represented. However, the column minimum
Hamming distance Cm is equal to K

2 . Thus, the row-separation property is well
represented which helps the binary classifiers be more error independent. Never-
theless, it is often not enough for the ensembles based on mECOC coding matrices
to exhibit the same generalization performance as the eECOC ensembles.

C. Class Decomposition Schemes of Random Error-Correcting Output Codes

2.4. Standard Class Decomposition Schemes 25

A class decomposition scheme of random error-correcting output codes (rECOC) is
a scheme with a matrixM of type {0, 1}K×B whose columns are randomly chosen
from those of the corresponding eECOC matrix (Dietterich and Bakiri, 1995). The
number B is in the range of [dlog2(K)e, 2K−1 − 1] and can be preset in advance.
Since it is equal to the number of the binary classifiers, it is used to control the
computational complexity of the rECOC ensembles.

The separation properties of the eECOC coding matrices, the row-separation and
column-separation properties, depends on the randomness process: they can be well
or poorly represented. In this context, we note that the row-separation property
improves when the number B increases. However, the column-separation property
does not necessarily improve when the number B decreases.

2.4.3 Decoding

Decoding the class of a query instance is performed according to the distance function
in decoding function (Definition 5). The decoding function differs in the type of binary
classifiers (i.e. discrete, scoring) employed. Below we elaborate on the decoding phase
for discrete and scoring binary classifiers separately.

Hamming Decoding

When the binary classifiers are discrete, the obvious choice is to employ the Hamming
distance over the code space C. Below we define the Hamming distance function to find
distances between instance and class code words.

Definition 7. (Hamming Distance Function) Hamming distance function distH is a
function from C × C to {0, ..., B} that maps the instance code word f(x) for an instance
x ∈ X and the class code word M(y, ·) for a class y ∈ Y to:

B∑
b=1

Jfb (x) 6= M (y, b)K,

where J K is an indicator function.

According to Definitions 5 and 7 the Hamming class decoding rule is as follows: a
query instance xq ∈ X is assigned to class y ∈ Y whose code word M(y, ·) is nearest
to the code word f(xq) in terms of the Hamming distance. The nice property of the class
decoding rule lays in its error-correcting capabilities, meaning that even if the number of
binary classifiers that misclassify the query instance xq exceeds CN (CN = bRm−12 c),
the final class estimate for that instance can be still correct. This property is due to the

26 Chapter 2. Background

fact that if we have CN mistakes in the code word f(xq), f(xq) will be still closer to the
code word M(y, ·) of the true class y. This is illustrated in Figure 2.8.

Figure 2.8: Error correction: the code word of a query instance with true class y3 is
nearest to its true class although the first and the third binary classifiers have misclassified
that instance.

Loss-Based Decoding

When the binary classifiers are scoring, the Hamming distance is not applicable. In this
case, loss-based distances over the code space C are employed (Escalera et al., 2008).
Below we define the loss-based distance function to find distances between instance code
words and class code words. i

Definition 8. (Loss-based Distance Function) Loss-based distance function distL is a
function from C ×C to {0, ..., B} that maps the instance code word f(xq) for an instance
x ∈ X and the class code word M(y, ·) for a class y ∈ Y to:

B∑
b=1

L (fb (xq) ,M (y, b))

where L is a loss function.

According to Definitions 5 and 8 the loss-based class decoding rule is as follows: a
query instance xq ∈ X is assigned to class y ∈ Y whose code word M(y, ·) is nearest in
terms of the loss-based distance to the code word f(xq). If the class y is indeed the true
class of xq , then the scores of all the binary classifiers fb for xq are being corrected. This
explains why the loss-based class decoding rule often outperforms the Hamming class
decoding rule.

There exist several options for the loss function (Flach, 2012). In this thesis we em-
ploy the square-loss function. It is defined as a function L from [0, 1]× {0, 1} to R+ that
maps the code word f(x) for an instance x ∈ X and a code word M(y, ·) for a class
y ∈ Y to

∑B
b=1(fb(x)−M(y, b))2.

3
Instance-based Decompositions

This chapter is based on the following publication:
Ismailoglu, F., Smirnov, E., Nikolaev, N., and Peeters, R. (2015). Instance-Based Decom-
positions of Error Correcting Output Codes. In 12th Int.Workshop on Multiple Classifier
Systems (MCS), LNCS, vol. 9132, pages 51–63. Springer International Publishing.

This chapter addresses the research questions related to the difficult binary classific-
ation problems and error dependency of binary classifiers. It proposes instance decom-
position schemes as an alternative to class decomposition schemes. An instance decom-
position scheme consists of several instance partitions. Any instance has a code word that
indicates the instance set including that instance for each partition. Instance classification
assumes two instance decomposition schemes: encoding and decoding. The encoding
scheme is used to train binary classifiers and to encode any query instance. The decod-
ing scheme is used to decode the instance class. This is achieved by finding the class of
an instance with code word nearest to the code word of the query instance in the coding
matrix of the decoding scheme.

Instance decomposition schemes are thoroughly analyzed in this Chapter. It is shown
that they do have a mechanism to compensate the errors caused by the difficult binary
classification problems and error dependency of binary classifiers. This is demonstrated
in the experiments in which instance-based decomposition schemes outperform ECOC-
based class decomposition schemes.

The chapter consists of 5 sections. Section 3.1 considers the problem of difficult
binary classification problems and the problem of error dependency of binary classifiers
together with related work. Section 3.2 introduces instance decomposition steps: defini-
tion, encoding and decoding steps, and initialization. Section 3.3 analyzes error correction
property of instance decomposition schemes. The experiments are provided in Section
3.4. Section 3.5 concludes the chapter.

28 Chapter 3. Instance-based Decompositions

3.1 Problems and Related Work

In the previous two chapters we showed that when decomposing multiclass classification
problems into a series of binary classification problems, one may encounter two serious
problems: the problem of difficult binary classification problems and the problem of error
dependency of the binary classifiers. In this section we consider these two problems and
provide the related work.

The problem of difficult binary classification problems means that these problems are
difficult for the binary classifiers employed. For example assume that the feature space
of a given four class classification problem is similar to the one shown in Figure 3.1.
Intuitively, the binary classification problem P1 that corresponds to super classes {+} and
{∗,−,@} is more difficult than the binary classification problem P2 that corresponds to
super classes {∗} and {+,−,@}. This means that a binary classifier for problem P1 will
err more often than a binary classifier for problem P2. Thus, more difficult classification
problems imply more errors. When the total number of errors per a query instance exceeds
the correction number CN (see the discussion on CN in Subsection 2.3.4), the instance
may be misclassified. Thus, the difficult binary classification problems can reduce the
error correcting capability of class decomposition schemes.

Figure 3.1: The feature space of a given four class problem.

There is no consensus how to measure the difficulty of (binary) classification prob-
lems. Ho and Basu (2000) considered several measures. Among them the most relevant
for our research are measures for class separability: linear separability and mixture identi-
fiability. A measure for linear separability indicates to what extent the instances of differ-
ent classes are linearly separable. If the different class instances are found to be linearly
separable, the classification problem can be solved by a linear classifier or a non-linear
classifier, and, thus, it is considered as relatively simple. Applied to the example in Figure
3.1 a good linear-separability measure will indicate that the binary classification problem
P1 with super classes {+} and {∗,−,@} is less linearly separable than the binary classi-

3.1. Problems and Related Work 29

fication problem P2 with super classes {∗} and {+,−,@}. Thus, the binary classification
problem P2 can be considered as simpler than the binary classification problem P1.

A measure for mixture identifiability indicates whether the instances of different classes
come from the same distribution. If for a classification problem the different class in-
stances are found to come from different distributions, the problem is easier to solve, and,
thus, it is considered as relatively simple. Applied to the example in Figure 3.1 a good
measure for mixture identifiability will find that the instances of the super classes {+}
and {∗,−,@} are more probable to come from the same distribution than the instances
of the super classes {∗} and {+,−,@}. Thus, the binary classification problem P2 with
super classes {∗} and {+,−,@} can be considered as simpler than the binary classifica-
tion problem P1 with super classes {+} and {∗,−,@}. We note that there exist several
measures for mixture identifiability. A recent example of such a measure is the p-value
function proposed in (Zhou et al., 2017).

The problem of error dependency of binary classifiers means that some of the binary
classifiers often err simultaneously. This increases the number of errors in instance code
words which in turn can result in instance misclassifications (if the number of errors per
query instance exceeds the correction number CN). We note that the problem of error de-
pendency of binary classifiers can be quite persistent, since it can cause misclassifications
even if the problem of difficult binary classification problems is not well present.

Approaches to avoid difficult binary classification problems are based on a search for
coding matrices whose columns represent relatively simple classification problems. They
are divided in two groups: approaches that adapt the coding matrices to the data and
approaches that learn the coding matrices from the data.

The approaches in the first group assume a presence of initial problem-independent
coding matrices (e.g. standard exhaustive ECOC matrices). The process of adaptation of
these matrices can follow different scenarios. Below we describe the main approaches
within this group.

The thinned-ECOC approach is a heuristical approach to coding matrix adaptation
proposed in (Hatemi, 2012). It adapts the initial coding matrix by removing its columns
that correspond to difficult binary classification problems, i.e. columns that induce bin-
ary classifiers with a low generalization performance. The process of adaptation employs
the iterative thinning algorithm introduced in (Banfield et al., 2004). In each iteration
the algorithm first computes the generalization performance of each binary classifier on a
validation set. Then it compares the generalisation performances of the binary classifiers
with the generalization performance of the ensemble (ecoc) classifier. It then removes the
column of the coding matrix that corresponds to the binary classifier with the lowest gen-
eralization performance. The algorithm stops when a predefined number of columns has
been removed and then it trains the ensemble based on the final reduced coding matrix.
Although good experimental results were reported, the thinned-ECOC approach suffers

30 Chapter 3. Instance-based Decompositions

from several problems. It is sensitive to the validation set and to the parameter that indic-
ates the number of columns that can be removed. In addition, the thinned-ECOC approach
is computationally inefficient, since the generalization performance of binary classifiers
need to be computed for the validation set in each iteration.

(Escalera and Pujol, 2006)) and (Marom et al., 2010) proposed independently two
similar heuristical approaches to coding matrix adaptation. These approaches perform
in an opposite manner compared with the thinned-ECOC approach. Given an initial
problem-independent coding matrix, they add news columns to the matrix if these columns
represent relatively simple binary problems. The process of adaptation is iterative. At
each iteration first a heuristical function determines a new column to be added. This is
done by analysing a confusion matrix of the ensemble based on the current coding matrix
on a separate validation set. Then, a column is added and the ensemble is retrained by
employing the updated coding matrix. The process of adaptation stops when there is no
further improve in the confusion matrix. The ensembles based on the final adapted cod-
ing matrices showed some improvement over the ensembles based on the initial coding
matrices. However, we note that the process of adaptation is sensitive to the validation set
(like the thinned-ECOC approach) and the heuristical functions for choosing columns. In
addition, it is computationally expensive, since the confusion matrix of the ensemble is
estimated on a validation set in each iteration.

Zor et al. (2010) proposed a heuristic approach to coding matrix adaptation that mod-
ifies the matrix columns. If the performance of a binary classifier for a class is worse than
random, then the column bit that corresponds to that class is considered for flipping. The
flipping process is realized iteratively starting from the class with the worst performance.
At each iteration the influence of the flipped bit is estimated using the generalization per-
formance on a validation set of the ensemble based on the current coding matrix. The bit
is flipped if the generalization performance is improved. The process stops when all the
problematic bits have been visited. The approach in (Zor et al., 2010) showed some im-
provement over ensembles based on the ECOC class decomposition schemes. However,
it is sensitive to the validation set and is computationally inefficient (since for each bit
change we need to test an ensemble on the validation set).

The second group of approaches to avoid difficult binary classification problems are
those approaches that learn the coding matrices from the data. The main representative
in this group is the Discriminant ECOC approach proposed in (Pujol et al., 2006). This
heuristic approach first learns a column code binary tree from the data. The column code
binary tree is a tree where each non-terminal node is a binary partition of a class set from
the partition associated with the parent node. The partition from each non-terminal node
is chosen to be the most discriminant. This is realized using a floating search based on the
fast quadratic mutual information between instances and the binary labels induced by the
partition. Once the column code binary tree has been learned, it is encoded in a matrix.

3.1. Problems and Related Work 31

This matrix is the coding matrix used to train the final ensemble. The experiments showed
that the Discriminant ECOC approach learns relatively short codes and can outperform
one-against-all ensembles. The short codes are definitely due to the column code binary
trees. However, it is questionable whether the tree-based codes are the most optimal for
the data, since they are not redundant. In addition, learning trees is an unstable process:
small mistakes especially close to the root can result in incorrect trees which in turn causes
incorrect codes w.r.t. the data.

The problem of error dependency of the binary classifiers has been addressed by sev-
eral authors. The approaches to avoid this problem can be divided into two groups. The
first group includes approaches that reduce the error dependency by learning a coding
matrix from the data. The second group includes approaches that reduce the error de-
pendency when training the binary classifiers.

The oldest approach in the first group is the one proposed by Kuncheva and Whitaker
(2003a). It is based on an assumption that to solve the problem of error dependency of the
binary classifiers we need to diversify these classifiers. Kuncheva and Whitaker (2003a)
introduced a heuristic measure for classifier diversity in coding matrices. To optimize
this measure she proposed an evolutionary approach. Kuncheva showed experimentally
that her approach can boost the diversity of binary classifiers and thus often the gener-
alization performance of the final ensembles. However, the approach is computationally
inefficient (like any other evolutionary approach). In addition, it has to be used with care,
since diversity does not always imply better generalization performance of the ensembles
(Kuncheva and Whitaker, 2003b).

Zhang et al. (2009) proposed one of the most advance approaches based on coding
matrix learning. The approach first builds a class graph that reflects the similarities
between the classes using support vector machines. Then, it computes the normalized
Laplacian of this graph. The eigenvectors of the Laplacian are discretized and in this
was they form the coding matrix. Since the eigenvectors are orthogonal, the columns
of the coding matrix are highly uncorrelated. This implies that error dependency of the
binary classifiers is minimized which boosts the generalization performance of the final
ensemble. The latter was shown experimentally on several real-life datasets.

The second group of approaches reduces the error dependency when training the bin-
ary classifiers based on fixed coding matrices. Below we provide two main approaches
within the group.

Liu et al. (2015) proposed an approach to jointly learning the binary classifiers. Under
the assumption that the binary classifiers are linear, they introduced an objective function
that takes into account the classifiers’ data fit and dependency. The classifiers are trained
simultaneously by minimizing that objective function. A regularization parameter is used
to control the trade-off between the accuracy of the binary classifiers and their independ-
ence. Thus, in contrast with (Zhang et al., 2009) this approach does not boost the accuracy

32 Chapter 3. Instance-based Decompositions

and independence of the binary classifiers simultaneously.
Furnkranz and Park (2012) proposed to use a multi-output classifier instead of the set

of the binary classifiers used in the standard setting. They showed that if the multi-output
classifier can handle the dependency between the outputs, the generalization performance
of the final ensemble can improve. Therefore, this work allows transferring any progress
in multi-output prediction to multiclass decomposition schemes.

If we summarize the related work, we can state that the current approaches to avoid
difficult binary classification problems and error dependency of binary classifiers include
a repertoire of techniques that employ:

• adapting/learning coding matrices (Hatemi, 2012; Escalera and Pujol, 2006; Marom
et al., 2010; Zor et al., 2010; Kuncheva and Whitaker, 2003a; Zhang et al., 2009);

• modifying decoding rules (Escalera et al., 2008; Smith and Windeatt, 2010); or

• reducing dependency of the binary classifiers (Liu et al., 2015; Furnkranz and Park,
2012).

In this chapter we aim at extending the repertoire of these techniques. We propose
instance decomposition schemes as an alternative to class decomposition schemes. We
show that when instance decomposition schemes are properly initialized they can solve
simultaneously the problem of difficult binary classification problems and the problem of
error dependency of binary classifiers.

3.2 Instance-based Decomposition Schemes

This section introduces instance decomposition schemes for mapping any multiclass clas-
sification problem into a set of binary classification problems. Subsection 3.2.1 formal-
izes instance decomposition schemes and coding matrices. Subsection 3.2.2 provides a
detailed explanation of the encoding and decoding stages. Subsection 3.2.3 explains how
to initialize coding matrices of the instance decomposition schemes.

3.2.1 Instance Decomposition Schemes

Consider a multiclass classification problem MCP with a class set Y of size K > 21 .
To decompose MCP into B binary classification problems BCPb (b ∈ {1, . . . , B}) we
introduce the notion of a binary instance partition.

1In this chapter instance decomposition schemes are considered for multiclass classification only. Extensions
of instance decomposition schemes for binary classification problems will be addressed in future research.

3.2. Instance-based Decomposition Schemes 33

Definition 9. (Binary Instance Partition) Given dataD ⊆ X×Y withN instances and
an integer b ∈ {1, . . . , B}, the set Pb(D) is said to be a binary instance partition of D iff
Pb(D) consists of two sets D−b and D+

b such that D−b ∪D
+
b = D and D−b ∩D

+
b = ∅.

Since the sets D−b and D+
b are non-empty, they have their own meaning derived from

the meaning of the classes of the instances they combine. Thus, without loss of generality
we consider the set D−b as a negative set and the set D+

b as a positive set for the binary
classification problem BCPb.

Definition 10. (Label Set) The label set Yb of a binary instance partition Pb(D) is defined
equal to {0, 1}, where 0 is the label of the instances in the negative set D−b of Pb(D) and
1 is the label of the instances in the positive set D+

b of Pb(D).

Definition 9 allows us to introduce instance decomposition schemes. An instance
decomposition scheme describes how to decompose a multiclass classification problem
MCP into B binary classification problems BCPb (b ∈ {1, . . . , B}), as given in Defini-
tion 11.

Definition 11. (Instance Decomposition Scheme) Given a multiclass classification prob-
lem MCP and a positive integer B > 0, an instance decomposition scheme of MCP is a
set SP (D) of B different binary instance partitions Pb(D) with b ∈ {1, . . . , B}.

Any instance decomposition scheme can be represented by a coding matrix.

Definition 12. (Coding Matrix) The coding matrix of an instance decomposition scheme
SP (D) is a binary N ×B matrix M iff for any n ∈ {1, . . . , N} and b ∈ {1, . . . , B} :

M(n, b) =

{
0 ∈ Yb if (xn, yn) ∈ D−b ,
1 ∈ Yb if (xn, yn) ∈ D+

b ,

where D−b ∈ Pb(D) and D+
b ∈ Pb(D).

A row M(n, ·) in the coding matrix M corresponds to a particular labeled instance
(xn, yn) ∈ D for n ∈ {1, . . . , N} and it forms the code word of that instance, i.e. the in-
stance code word (see Figure 3.2). We note that the meaning of any two bitsM(n, b1) and
M(n, b2) in an instance code word is different for b1 6= b2, since they correspond to differ-
ent binary instance partitions. Additionally, the instance code words are not restricted: the
code words M(n1, ·) and M(n2, ·) of two different instances (xn1

, yn1
), (xn2

, yn2
) ∈ D

can be either the same or different. To characterize the similarity/dissimilarity of the code
words we introduce the notions of the row similarity set and the row distance set.

Definition 13. (Row sets) Given a coding matrix M ,

34 Chapter 3. Instance-based Decompositions

M =



1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1


Figure 3.2: Matrix M of an instance decomposition scheme SP (D) for 4 classes. M is
initialized according to the one-against-all class decomposition scheme. The first three
rows correspond to the three instances of class y1. The next two rows correspond to the
two instances of class y2, and so on.

(a) the row similarity setRSM (n1, n2) for any two instance indices n1, n2 ∈ {1, . . . , N}
is the set of indices b ∈ {1, . . . , B} such that M(n1, b) = M(n2, b), and

(b) the row dissimilarity set RDM (n1, n2) for any two instance indices n1, n2 ∈
{1, . . . , N} is the set of indices b ∈ {1, . . . , B} such that M(n1, b) 6= M(n2, b).

The row similarity set RSM for any two instances (xn1
, yn1

), (xn2
, yn2

) ∈ D is
the complement of the row distance set RDM to the set {1, . . . , B}. The size of the
row distance set RDM is the Hamming distance distH between the codewords of these
instances in the coding matrix M .

A column M(·, b) in the coding matrix M corresponds to a particular binary instance
partition Pb(D), for b ∈ {1, . . . , B}, and it forms the code word of that partition, i.e.
the partition code word (see Figure 3.2). By Definition 11 any two partition code words
M(·, b1) and M(·, b2) are different if b1 6= b2. To characterize the similarity/dissimilarity
of the partition code words we introduce the notions of the column similarity set and the
column dissimilarity set .

Definition 14. (Column sets) Given a coding matrix M ,

(a) the column similarity setCSM (b1, b2) for any two partition indices b1, b2 ∈ {1, . . . , B}
is the set of the indices n ∈ {1, . . . , N} such that M(n, b1) = M(n, b2), and

(b) the column dissimilarity set CDM (b1, b2) for any two partition indices b1, b2 ∈
{1, . . . , B} is the set of the indices n ∈ {1, . . . , N} such thatM(n, b1) 6= M(n, b2).

The column similarity setCSM (b1, b2) for any two partition indices b1, b2 ∈ {1, . . . , B}
is the complement of the column distance set CDM (b1, b2) to the set {1, . . . , N}. The
size of the column distance set CDM (b1, b2) is the Hamming distance distH between the
partition codewords with indices b1 and b2 in the coding matrix M .

3.2. Instance-based Decomposition Schemes 35

3.2.2 Encoding and Decoding

To solve a multiclass classification problem MCP we need to employ two instance de-
composition schemes: encoding instance decomposition scheme SP e(D) and decoding
instance decomposition scheme SP d(D) (see Figure 3.3). Prior to the encoding stage
SP e(D) is used: (1) to represent MCP via a set of binary classification problems BCPb
(b ∈ {1, . . . , B}) and (2) to train binary classifiers for those problems. During the en-
coding stage a code word of a query instance is formed by the predictions provided by
the binary classifiers. During the decoding stage the code word is used to decode the
instance class. This is realized by finding the class of an instance with code word closest
to the code word of the query instance in the coding matrix Md of the decoding instance
decomposition scheme SP d(D). Below we provide a detailed description of the stages
considered.

Me =



1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 1 1 0 0 1
0 1 0 1 0 1 0
0 1 0 1 0 1 0


Md =



1 1 1 0 0 0 1
0 0 0 1 1 1 1
0 0 1 1 0 1 0
1 1 1 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 0 0 1
0 1 0 0 1 1 0
0 0 0 1 1 1 1


Figure 3.3: Left: encoding matrix Me of an encoding instance decomposition scheme
SP e(D) for 4 classes. Me is initialized according to the exhaustive ECOC class decom-
position scheme (eECOC). The first two rows correspond to the two instances of class
y1. The next three rows correspond to the three instances of class y2, and so on. Right:
decoding matrix Md of the decoding instance decomposition scheme SP d(D).

Prior to the encoding stage we first generate for each b ∈ {1, . . . , B} a binary classific-
ation problem BCPb using the coding matrix Me of the encoding instance decomposition
scheme SP e(D). Any BCPb is determined by code word Me(·, b) of partition P eb (D) ∈
SP e(D). The data Db of BCPb is formed in X × Yb. More precisely, any instance
(xn, yn) ∈ D (n ∈ {1, . . . , N}) is transformed to a new instance (xn,M

e(n, b)) ∈ Db.
Once the binary classification problems BCPb have been set, we train a binary classifier
fb : X → Yb for each BCPb. The binary classifiers fb then form an ensemble classifier
f : X → Y equal to {fb}Bb=1 with a classification rule defined below.

During the encoding stage, given a query instance xN+1 ∈ X and an ensemble classi-
fier f , we form the code word f(xN+1) of xN+1 in the code space C from the predictions
of the binary classifiers fb ∈ f (see Section 2.2 for the definition of C). Then, during
the decoding stage the code word f(xN+1) is used to decode the instance class. For

36 Chapter 3. Instance-based Decompositions

that purpose we employ the coding matrix Md of the decoding instance decomposition
scheme SP d(D). We apply the decoding function for instance decomposition schemes
that maps f(xN+1) into a set of instances (xn, yn) which code words Md(n, ·) in Md

are the closest.

Definition 15. (Decoding Function for Instance Decomposition Schemes) Given a
code word f(xN+1) for an instance x ∈ X , the decoding function gI is a function from
C to 2X×Y defined equal to:

argmin
(xn,yn)∈X×Y

dist (f(x),M (n, ·)) ,

where dist is a distance measure on the code space C.

The set Ŷ of the final estimates of the true class for the query instance xN+1 is com-
puted as a set of classes with majority of the instances in gI(f(xN+1)). More precisely,

Ŷ = argmax
y∈Y

(#{(xn, yn) ∈ gI(f(xN+1))|yn = y}).

Since the binary classifiers are discrete, the set Ŷ can actually contain more than one
element. Thus, the final class estimate ŷ of instance xN+1 is chosen randomly from the
classes in Ŷ .

We note that the classification rule we presented uses the decoding matrix Md which
can be different from encoding matrix Me. To our knowledge, this is the first work that
distinguishes the matrix used in the encoding step and the matrix used in the decoding
step. In the next section we show how to initialize these matrices.

3.2.3 Initialization

The generalization performance of the ensemble f is sensitive to the initialization of in-
stance decomposition schemes SP e(D) and SP d(D). Below we propose a simple pro-
cedure for initializing the coding matrices Me and Md of these schemes.

Definition 16. (Matrix Initialization Procedure)

(1) Given a coding matrix M of a class decomposition scheme, the coding matrix Me

of SP e(D) is initialized such that:

(∀ n ∈ {1, . . . , N})Me(n, ·) = M(n, ·).

(2) The decoding matrix Md of SP d(D) is initialized such that:

(∀n ∈ {1, . . . , N}, b ∈ {1, . . . , B})(Md(n, b) = fb(xn)).

3.3. Error Correction Analysis 37

By Definition 16 the coding matrixMe of the encoding instance decomposition scheme
SP e(D) is initialized according to the coding matrix M of some class decomposition
scheme (e.g., exhaustive/minimal/random ECOC etc. (Escalera et al., 2010)). This means
that the instances of a class have the same code words and these words differ from the
code words of the instances of the remaining classes.

By Definition 16 the coding matrixMd of the decoding instance decomposition scheme
SP d(D) is initialized using the predictions of the binary classifiers fb ∈ f . Thus, the key
feature of the initialization procedure is that we learn SP d(D). We note that this is done
by first training binary classifiers fb ∈ f using the encoding instance decomposition
scheme SP e(D) and then by applying these classifiers over the instances of D. Hence,
the coding matrix Md of SP d(D) consists of only those instance code words that are
achievable through binary classifiers fb ∈ f .

3.3 Error Correction Analysis

This section studies the error correction capability of the instance decomposition schemes
initialized by the procedure from Definition 16. It first analyzes the separation properties
of the coding matrices and then determines the types of errors that can be handled.

3.3.1 Separation Properties

The separation properties of the coding matrixMe of an encoding instance decomposition
scheme SP e(D) depends on the coding matrixM of the initialization class decomposition
scheme (see Definition 16). The matrixM has to be chosen so that the matrixMe is both,
row-separated and column-separated, in terms of the Hamming distance (Dietterich and
Bakiri, 1995). The row separation requirement comes from the fact that Me is used to
learn the decoding matrix Md (through the binary classifiers). The column separation
requirement comes from the fact that the binary classifiers should be as error independent
as possible.

The minimum Hamming distance between any two rows of the encoding matrix Me

is equal to the size of the minimal row distance setRDMe(n1, n2) over any two instances
(xn1

, yn1
), (xn2

, yn2
) ∈ D. By Definition 16 it follows that this distance is equal to

the minimal row Hamming distance of the coding matrix M of the class decomposition
scheme used for initializing Me.

The coding matrix Md of the decoding instance decomposition scheme SP d(D) has
to be well row-separated only. This is because Md is used to decode binary predictions
to form the final class estimate and is not used to train binary classifiers.

To characterize the minimal row Hamming distance in the matrix Md of the decod-
ing instance decomposition scheme SP d(D) we note that the binary classifiers may err

38 Chapter 3. Instance-based Decompositions

differently for any two instances. Hence, we introduce the error set for an instance.

Definition 17. (Error set) The error set EMe(n) for an instance (xn, yn) ∈ D is the set
of indices b ∈ {1, . . . , B} of the binary classifiers fb ∈ f , trained through the encoding
matrix Me, that err for that instance; i.e.

EMe(n) = {b ∈ {1, . . . , B} |Me(n, b) 6= Md(n, b)}.

Using error sets we can compute the row dissimilarity set for any two instances in
the the decoding matrix Md. The computation is realized according to Theorem 1 given
below.

Theorem 1. The row dissimilarity setRDMd(n1, n2) for any two instances (xn1
, yn1

), (xn2
, yn2

) ∈
D w.r.t. the decoding matrix Md equals:

[
RDMe(n1, n2) \

[
[EMe(n1) \ EMe(n2)] ∪ [EMe(n2) \ EMe(n1)]

]]
∪[

RSMe(n1, n2) ∩
[
[EMe(n1) \ EMe(n2)] ∪ [EMe(n2) \ EMe(n1)]

]]
.

Proof. By Definition 13, for any two instances (xn1
, yn1

), (xn2
, yn2

) ∈ D:

RDMd(n1, n2) = {b ∈ {1, . . . , B} |Md(n1, b) 6= Md(n2, b)}.

Since RDMe(n1, n2) ∪RSMe(n1, n2) = {1, . . . , B}, we have:

RDMd(n1, n2) = {b ∈ RDMe(n1, n2) |Md(n1, b) 6= Md(n2, b)} ∪
{b ∈ RSMe(n1, n2) |Md(n1, b) 6= Md(n2, b)}. (3.1)

The sets in the right had side of equation (3.1) are disjointed and, thus, we consider them
separately. We start with the first set that we express using the error sets EMe(n1) and
EMe(n2). This is done as follows:

{b ∈ RDMe(n1, n2) |Md(n1, b) 6= Md(n2, b)}
= {b ∈ RDMe(n1, n2) | (Me(n1, b) = Md(n1, b) ∧Me(n2, b) = Md(n2, b)) ∨

(Me(n1, b) 6= Md(n1, b) ∧Me(n2, b) 6= Md(n2, b))}
= {b ∈ RDMe(n1, n2) | (Me(n1, b) = Md(n1, b) ∨Me(n2, b) 6= Md(n2, b)) ∧

3.3. Error Correction Analysis 39

(Me(n1, b) 6= Md(n1, b) ∨Me(n2, b) = Md(n2, b))}
= {b ∈ RDMe(n1, n2) | ¬((Me(n1, b) 6= Md(n1, b) ∧Me(n2, b) = Md(n2, b)) ∨

(Me(n1, b) = Md(n1, b) ∧Me(n2, b) 6= Md(n2, b)))}
= RDMe(n1, n2) \

[
[EMe(n1) \ EMe(n2)] ∪ [EMe(n2) \ EMe(n1)]

]
(3.2)

We continue the proof for the second set from the right had side of equation (3.1).

{b ∈ RSMe(n1, n2) |Md(n1, b) 6= Md(n2, b)}
= {b ∈ RSMe(n1, n2) |Me(n1, b) 6= Md(n1, b)⊕Me(n2, b) 6= Md(n2, b)}
= {b ∈ RSMe(n1, n2) | (Me(n1, b) 6= Md(n1, b) ∨Me(n2, b) 6= Md(n2, b)) ∧

¬(Me(n1, b) 6= Md(n1, b) ∧Me(n2, b) 6= Md(n2, b))}
= {b ∈ RSMe(n1, n2) | (Me(n1, b) 6= Md(n1, b) ∨Me(n2, b) 6= Md(n2, b)) ∧

(Me(n1, b) = Md(n1, b) ∨Me(n2, b) = Md(n2, b))}
= {b ∈ RSMe(n1, n2) | (Me(n1, b) 6= Md(n1, b) ∧Me(n2, b) = Md(n2, b)) ∧

(Me(n1, b) = Md(n1, b) ∧Me(n2, b) 6= Md(n2, b))}
= RSMe(n1, n2) ∩

[
[EMe(n1) \ EMe(n2)] ∪ [EMe(n2) \ EMe(n1)]

]
(3.3)

By substituting the new definitions (3.2) and (3.3) in the right hand side of equation (3.1)
the theorem is proven. �

The minimal row Hamming distance in the decoding matrixMd is equal to the size of
the minimal set RDMd(n1, n2) over any two instances (xn1

, yn1
), (xn2

, yn2
) ∈ D given

yn1 6= yn2 . Due to non-uniform generalization performance of the binary classifiers there
is no analytic way to express this distance in general. However, for particular row sub-
matrices of the decoding matrix Md the minimal row Hamming distance can be derived.
Below we provide three possible cases of such matrices.

Case 1: There exists a row submatrix Md
r of the decoding matrix Md such that for any

two instances (xn1
, yn1

), (xn2
, yn2

) ∈ D we have EMe(n1) = EMe(n2).

In this case by Theorem 1 for any two instances (xn1
, yn1

), (xn2
, yn2

) ∈ D the row
dissimilarity setRDMd(n1, n2) inMd

r equals the row dissimilarity setRDMe(n1, n2) of
the coding row submatrix Me

r . The latter is a row submatrix of the encoding matrix Me

that corresponds to the same instances as Md
r . Thus, the minimal row Hamming distance

of the encoding row submatrix Me
r equals that of the decoding row submatrix Md

r . By
Definition 16 the minimal row Hamming distances inMe and the coding matrixM of the

40 Chapter 3. Instance-based Decompositions

class decomposition scheme used for initializing Me coincide. Thus, the minimal row
Hamming distance in Md

r equals the minimal row Hamming distance among codewords
in M of classes present in Md

r .

Example 1. Take row 2 (class y1) and row 4 (class y2) inMe andMd in Figure 3.3. Then
EMe(2) = {1, 2, 3}, and EMe(4) = {1, 2, 3}. Thus, RDMe(2, 4) = RDMd(2, 4) =

{1, 2, 3, 4}.

Case 2: There exists a row submatrix Md
r of the decoding matrix Md such that for

any two instances (xn1
, yn1

), (xn2
, yn2

) ∈ D we have EMe(n1) ∩ EMe(n2) = ∅ and
EMe(n1) ∪ EMe(n2) = RSMe(n1, n2).

In this case by Theorem 1 for any two instances (xn1 , yn1), (xn2 , yn2) ∈ D the row
dissimilarity setRDMd(n1, n2) inMd

r becomes maximum (i.e., it is equal to {1, . . . , B}).
Thus, the minimal row Hamming distance in the decoding row submatrix matrix Md

r

equals B.

Example 2. Take row 6 (class y3) and row 7 (class y4) inMe andMd in Figure 3.3. Then
RSMe(6, 7) = {1, 4, 5}, EMe(6) = {1}, and EMe(7) = {4, 5}. Thus, RDMd(6, 7) =

{1, 2, 3, 4, 5, 6, 7}.

Case 3: There exists a row submatrix Md
r of the decoding matrix Md such that for

any two instances (xn1 , yn1), (xn2 , yn2) ∈ D we have EMe(n1) ∩ EMe(n2) = ∅ and
EMe(n1) ∪ EMe(n2) = RDMe(n1, n2).

In this case by Theorem 1 for any two instances (xn1 , yn1), (xn2 , yn2) ∈ D the row
dissimilarity setRDMd(n1, n2) inMd

r is minimal (i.e., it is equal to ∅). Thus, the minimal
row Hamming distance in the decoding row submatrix Md

r equals 0.

Example 3. Take row 5 (class y2) and row 8 (class y4) in Me and Md in Figure 3.3.
Then RDMe(5, 8) = {2, 4, 5, 7}, EMe(5) = {4}, and EMe(8) = {2, 5, 7}. Thus,
RDMd(5, 8) = ∅.

3.3.2 Error Handling

Using the results we received so far we discuss below when instance decomposition
schemes can handle errors of the binary classifiers. We analyze two basic scenarios.

In the first scenario we consider a subset S ⊆ D of instances (xn, yn) such that the
error set EMe is the same for all the instances in S. According to Definition 17 the bin-
ary classifiers from the set {fb|b ∈ EMe} err simultaneously on the instances from S.
This implies by Theorem 1 that the row distance sets RDMe and RDMd for any two
instances from S stay equal (see Case 1). Thus, the minimal Hamming distance between

3.3. Error Correction Analysis 41

the codewords in Md of different-class instances in S equals the minimal Hamming dis-
tance between the codewords in Me of these instances. This means that if the encoding
matrix Me has been initialized with an error-correcting property, this property is pre-
served between the codewords inMd of any two instances from S that belong to different
classes. Thus, we conclude that:

(1) the decoding matrixMd of the instance decomposition scheme SP d(D) can handle
the simultaneous errors of the binary classifiers.

In the second scenario we consider a subset S1 ⊆ D of instances (xn1 , yn1) with
common error set EMe

1
and a subset S2 ⊆ D of instances (xn2

, yn2
) with common error

set EMe
2

such that EMe
1
∩ EMe

2
= ∅. According to Definition 17 the binary classifiers

from the sets {fb|b ∈ EMe
1
} and {fb|b ∈ EMe

2
} err non-simultaneously on the instances

from S1 ∪ S2. By Theorem 1 for any two different-class instances (xn1
, yn1

) ∈ S1 and
(xn2 , yn2) ∈ S2:

(a) the error subsets EMe(n1) ∩ RDMe(n1, n2) and EMe(n2) ∩ RDMe(n1, n2) de-
creases the row dissimilarity set RDMd(n1, n2);

(b) the error subsets EMe(n1) ∩ RSMe(n1, n2) and EMe(n2) ∩ RSMe(n1, n2) in-
creases the row dissimilarity set RDMd(n1, n2).

The decrease in the size of the row dissimilarity set RDMd(n1, n2) caused by the
error subsets EMe(n1) ∩ RDMe(n1, n2) and EMe(n2) ∩ RDMe(n1, n2) can be com-
pensated by the increase in the size of the same set caused by the error subsetsEMe(n1)∩
RSMe(n1, n2) and EMe(n2) ∩ RSMe(n1, n2). This means that for any two different-
class instances (xn1

, yn1
) ∈ S1 and (xn2

, yn2
) ∈ S2 the size of the row dissimil-

arity set RDMd(n1, n2) can stay close to that of the size of the row dissimilarity set
RDMe(n1, n2). Thus, the minimal Hamming distance between the codewords in Md

of different-class instances in S1 ∪ S2 can stay close to the minimal Hamming distance
between the codewords in Me of these instances. This means that if the encoding matrix
Me has been initialized with an error-correcting property, this property can be preserved
between the codewords in Md of the instances from S1∪S2. Thus, we can conclude that:

(2) the decoding matrixMd of the instance decomposition scheme SP d(D) can handle
the non-simultaneous errors of the binary classifiers.

The extent the non-simultaneous errors of the binary classifiers can be handled de-
pends on the sizes of the row distance sets RDMd(n1, n2) in the decoding matrix Md.
From points (a) and (b) (see above) it clear that these sizes depend on the sizes of the
row distance setsRDMe and row similarity setsRSMe in the encoding matrixMe. More

42 Chapter 3. Instance-based Decompositions

precisely, the sizes of the row distance sets RDMd(n1, n2) decrease with the sizes of the
row distance sets RDMe and they increase with the size of the row similarity sets RSMe .
For the worst case when the instance decomposition schemes are initialized using the ex-
haustive ECOC class decomposition scheme the sizes of the sets RDMe equal 2K−2 and
the sizes of the sets RSMe equal 2K−2− 1. For any other case when the instance decom-
position schemes are initialized using the non-exhaustive class decomposition schemes
the sizes of the sets RDMe are always smaller than those of the sets RSMe . Thus, we
may conclude that the non-simultaneous errors of the binary classifiers can be handled
better when the instance decomposition schemes are initialized using the non-exhaustive
class decomposition schemes.

We note that difficult classification problems can cause both simultaneous errors and
non-simultaneous errors while error dependency of the binary classifiers causes essen-
tially simultaneous errors. Thus, our main conclusion is that the instance decomposition
schemes are capable of handling difficult classification problems and error dependency of
the binary classifiers.

3.4 Experiments

This section studies ensembles based on the class decomposition schemes and ensembles
based on the instance decomposition schemes experimentally. It first provides the experi-
mental setup, and, then, the results and discussion.

3.4.1 Experimental Setup

The experiments had the following setup. The decomposition schemes were chosen de-
pending on the number of classes (K) in the datasets considered. That is why, to reduce
the computational cost we employed two types of the class decomposition schemes: the
exhaustive ECOC class decomposition schemes (eECOC) for K ≤ 7 and the random
ECOC class decomposition schemes (rECOC) for K > 7. For the same reason, we em-
ployed two types of the instance decomposition schemes (IDS): the instance decomposi-
tion schemes initialized with eECOC for K ≤ 7 and the instance decomposition schemes
initialized with rECOC for K > 7. The binary classification algorithm was Logistic Re-
gression (le Cessie and van Houwelingen, 1992). 13 multiclass datasets taken from the
UCI repository (Bache and Lichman, 2013) were used in our experiments. They are sum-
marized in Table 3.1. The evaluation method was 10-fold cross validation averaged over
10 runs. The classification accuracy of the classifiers was compared using the paired t-test
(Nadeau and Bengio, 2001) at the 5% significance level.

3.4. Experiments 43

Table 3.1: The UCI datasets used in the experiments.

Dataset # Instances # Attributes # Classes
Balance 625 4 3

Iris 150 4 3
Thyroid 215 5 4

Car 1728 6 4
Vehicle 846 18 4

Dermatology 366 34 6
Glass 214 9 7

Segmentation 2310 19 7
Zoo 101 16 7
Ecoli 336 8 8

Mfeat-mor 2000 6 10
Optdigits 3823 64 10
Pendigits 7494 16 10

3.4.2 Experimental Results and Discussion

This subsection studies how the generalization performance of the ensembles based on
ECOC and the ensembles based on IDS is influenced by the errors of the binary classi-
fiers in those ensembles. The errors were systematically introduced via decreasing the
complexity of the binary classifiers. Since the binary classifiers were logistic regressions,
the complexity was decreased increasing the ridge parameter r.

Our first experiment was on the four-class car dataset from UCI (Bache and Lichman,
2013). We recorded the accuracy of the eECOC and IDS ensembles while decreasing
complexity of the logistic regression binary classifiers. The complexity was controlled
with the ridge parameter r from 1.0E-12 (high complexity) to 10000 (low complexity).
To indicate the errors of all the binary classifiers, we employed the empirical probability
of the joint error of the binary classifiers. Therefore, for each run of the ensembles (i.e.
each value of r in the experiments) we recorded the empirical distribution of the joint-
error probability of the logistic regression binary classifiers.

We note that the car dataset has 4 classes (K = 4). This implies that the eECOC
ensemble can correct strictly at most one error of the binary classifiers (2K−3 − 1 =

24−3 − 1 = 1). That is why, we plotted in Figure 3.4 the accuracy of eECOC and
IDS ensembles against the empirical cumulative probability of p(#errors > 1). The
figure shows that the accuracy of the IDS ensemble is bigger than that of the eECOC
ensemble for p(#errors > 1) greater than 0.3. The IDS ensemble outperforms the
eECOC ensemble for p(#errors > 1) equal to 0.16 when the accuracy difference is
10.17%. Then the accuracies of the ensembles gradually converge and for p(#errors >
1) = 0.3 they are both equal to 70.02%. After this point the logistic regression binary

44 Chapter 3. Instance-based Decompositions

Figure 3.4: The accuracy vs the cumulative probability of p(#errors > 1) of the eECOC
and IDS ensembles on the car data.

classifiers become majority-vote classifiers and the accuracies of the eECOC and IDS
ensembles essentially are the same equal to 70.02%.

We observed similar behavior of the eECOC and IDS ensembles in the second set
of experiments with 12 datasets from UCI (Bache and Lichman, 2013). The results are
shown in Table 3.2. Table 3.2 shows the accuracy of the ensembles when the complexity
of logistic regression binary classifiers decreases with the values of the ridge parameter r
from 1 to 50. The IDS ensembles won in 64 out of 78 cases, 40 times significantly, and it
lost in 8 out of 78 cases, 0 times significantly.

Table 3.2: The accuracy of the eECOC and IDS ensembles vs. complexity of logistic
regression binary classifiers controlled by the ridge parameter r in [1, 50]. Bold numbers
indicate statistically better results in group for a r-value.

r=1 r=10 r=20 r=30 r=40 r=50
Data IDS eECOC IDS eECOC IDS eECOC IDS eECOC IDS eECOC IDS eECOC

Balance 91.67 87.68 91.67 87.68 91.67 87.68 91.67 87.68 91.67 87.68 91.67 87.68
Iris 95.60 73.33 90.40 64.13 90.00 60.27 88.93 56.4 86.13 52.8 82.8 50.13

Thyroid 95.5 93.8 94.24 93.77 94.17 93.58 94.08 93.49 94.02 93.47 94.00 93.36
Vehicle 77.92 75.44 71.66 71.80 68.09 67.97 65.89 65.75 64.26 64.31 62.91 63.12
Glass 60.23 60.19 58.05 54.75 58.41 53.82 58.67 51.88 60.69 52.26 60.74 50.95

Dermatology 97.43 97.16 97.92 97.76 97.65 97.59 97.70 97.32 97.21 97.27 96.82 97.21
Segment 90.25 84.64 87.61 81.18 84.63 80.54 83.73 79.65 81.66 79.65 83.12 78.54

Ecoli 83.04 84.35 82.32 78.29 79.23 74.83 77.51 73.52 77.86 71.02 78.64 68.94
Zoo 90.29 90.69 89.89 88.11 89.89 87.71 90.21 83.18 89.05 81.78 88.69 79.44

Mfeat-mor 66.32 53.68 65.92 46.32 64.08 42.88 63.60 41.58 64.64 39.68 67.68 37.28
Pendigits 81.73 75.95 83.03 66.24 81.41 59.48 79.56 55.66 79.08 51.46 77.98 48.90
Optdigits 89.99 90.54 88.84 89.29 88.61 87.14 87.95 84.29 88.76 82.75 88.42 81.29

We conducted two-sided Wilcoxon’s signed rank test (a.k.a Wilcoxons T test) for
each ridge parameter value to test if the observed difference between the accuracy of IDS
ensembles and that of eECOC ensembles is statistically significant when considering all

3.5. Conclusion 45

Table 3.3: The test statistics of Wilcoxon’s signed rank test. Bold numbers indicate stat-
istically significant results.

r 1 10 20 30 40 50
TWilcox 27 22 0 0 23 23

of the datasets Japkowicz and Shah (2014). Table 3.3 shows the test statistics we found.
The critical value for two sided Wilcoxon’s signed rank test at significance level 5% is
13, when the number of datasets is 12 (Japkowicz and Shah, 2014). The test statistic was
below the critical value of 12, in fact 0, when the ridge parameter was set to 20 and 30.
Therefore, for such large values of the ridge parameter, we rejected the null hypothesis
that the IDS ensembles and the eECOC ensembles perform equally well. This means that
the IDS ensembles and the eECOC ensembles are different, and the IDS ensembles are
superior especially when complexity of the logistic regression binary classifiers decreases;
i.e. when the number of binary errors increases.

3.5 Conclusion

In this chapter we proposed instance decomposition schemes (IDS) for solving multiclass
classification problems. In contrast to class decomposition schemes, IDS consists of sev-
eral instance partitions and thus any training instance is represented by a code word. Since
the classes are given with instances, they are represented by the instance code words (i.e.,
one class is given with several code words). This allows for a richer class representation
and more flexible decompositions.

The key feature of IDS is the usage of a separate encoding IDS and a separate de-
coding IDS. We proposed to initialize the encoding IDS according to some standard class
decomposition scheme and to learn the decoding IDS from the data through the encoding
IDS. In this case we showed that the errors caused by the difficulty of binary classification
problems and error dependency of binary classifiers can be compensated. This is demon-
strated in the experiments in which IDS outperformed ECOC-based class decomposition
schemes.

The concept of IDS will be used in throughout this thesis. Chapter 6 will introduce an
extension of IDS for domain adaptation (Pan and Yang, 2010) and Chapter 7 will provide
a bioinformatics application.

4
Weighted Decoding via Fractional
Programming and Bipartite Graph

Partitioning

This chapter is based on the following publications:
Ismailoglu, F., Sprinkhuizen-Kuyper, I. G., Smirnov, E., Escalera, S. and Peeters, R.
(2015). Fractional Programming Weighted Decoding for Error-Correcting Output Codes.
In 12th Int.Workshop on Multiple Classifier Systems (MCS), LNCS, vol. 9132, pages
38-50. Springer International Publishing.

Ismailoglu, F. (2015). Weighted Decoding for Error-Correcting Output Codes via Bi-
partite Graph Partitioning. In Proc. of the 27th Benelux Conf. on Artificial Intelligence
(BNAIC), Hasselt, Belgium.

This chapter addresses the problem of difficult binary classification problems from
the perspective of weighting binary classifiers. We assume that binary classifiers that
correspond to difficult binary classification problems are prone to err, while those that
correspond to relatively easy binary classification problems tend to be more accurate.
This suggests to weight binary classifiers according to their generalization performances.
In doing so, one implicitly weights the binary classifiers based on how difficult the cor-
responding binary classifiers are. In class decomposition, such weighting is realized by
means of weighted decoding (Escalera et al., 2008; Smith and Windeatt, 2010).

In this chapter we propose two novel weighted decoding algorithms: Fractional Pro-
gramming Weighted decoding (in short FP.Weighted decoding) and Bipartite Graph Parti-
tioning Weighted decoding (in short BGP.Weighted decoding). As opposed to previously
proposed weighted decoding algorithms in the literature, the FP.Weighted decoding is a
metric learning algorithm, since it learns a task-specific distance function employed in the
decoding phase. Here the task is to learn a metric which produces a small value for the

4.1. Background and Related Work 47

distance between an instance code word and its true class code word, whereas it produces
larger values for the distances between the instance code word and the other class code
words. Another distinguishing element of the FP.weighted decoding algorithm is that
it estimates the weights of the binary classifiers by solving an optimization problem (a
fractional programming problem) in contrast to the state-of-the-art algorithms proposed
earlier

The second proposed weighted decoding algorithm, BGP.Weighted decoding, pro-
ceeds to estimate the weights from the binary classification problems themselves. It as-
sumes that the smaller the distance between a positive super class and a negative super
class is, the more difficult it is to handle the associated binary classification problem. To
estimate the distance between a positive and a negative super class, the BGP.Weighted
decoding algorithm utilizes the well-known inter-cluster distances from clustering, view-
ing the classes that form the super classes as clusters in the feature space. As a result, the
computed weights are independent of the binary classifiers used, and therefore no recom-
puting is needed in case one switches to use a different binary classification algorithm.
This is a novel property of the BGP.Weighted decoding algorithm.

The present chapter consists of five sections. In Section 4.1, we provide background
information on weighted decoding and we briefly discuss the proposed decoding al-
gorithms. Section 4.2 introduces the first proposed weighted decoding algorithm, FP.Weighted
decoding. The optimization problem arising in the algorithm is of fractional programming
type, and to explain it we provide a gentle introduction to fractional programming in Sub-
section 4.2.1. Section 4.3 introduces the second weighted decoding algorithm proposed
in this chapter, BGP.Weighted decoding. In Section 4.4 we report on experimental results
obtained for the proposed weighted decoding algorithms, for the unweighted decoding
algorithm, and for two state-of-the-art weighted decoding algorithms. We evaluate these
results and compare the performances in Subsection 4.4.2. Finally, in Section 4.5, we sum
up the contributions and the limitations of the proposed weighted decoding algorithms.

4.1 Background and Related Work

As mentioned in the previous chapter, decomposing a multiclass classification problem
into binary classification problems may leave one with difficult binary classification prob-
lems. In such a case, the generalization performances of the associated binary classifiers
may be relatively poor. This in turn may result in instance misclassification. To tackle this
problem, in addition to improving the encoding phase of class decomposition schemes as
discussed in Chapter 3, one can also improve the decoding phase by weighting the outputs
of binary classifiers. That is, one can perform weighted decoding.

In weighted decoding, a weight matrix W of size K × B is learned which has all its
entries in the interval [0, 1]. The rows of W correspond to the K classes and its columns

48 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

to the B binary classifiers. For every y ∈ Y and b ∈ {1, . . . , B}, the entry W (y, b)

indicates the generalization performance of the binary classifier fb over the class y. To
estimate this generalization performance, different algorithms can be used (Escalera et al.,
2008; Smith and Windeatt, 2010). Once W is estimated, it is used in conjunction with
the distance function employed in the decoding phase to obtain weighted decoding (see
Chapter 2 for the decoding phase of class decomposition schemes). From this point of
view, it can be thought that weighted decoding takes the generalization performances of
the binary classifiers into account during the decoding phase.

In weighted decoding, the Hamming distance function (7) and the loss-based distance
function (8) are turned into a weighted Hamming distance function and a weighted loss-
based distance function. The weighted Hamming distance is considered when the binary
classifiers are of the discrete type. The weighted loss-based distance is considered when
the binary classifiers are of the scoring type. Formal definitions of the weighted Hamming
distance function and the weighted loss-based distance function are as follows.

Definition 18. (Weighted Hamming Distance Function) Let M be a coding matrix, let
x ∈ X be an instance with a code word f(x) ∈ C, and let M(y, ·) ∈ C be the code word
for the class y ∈ Y resulting from M . If W ∈ [0, 1]K×B is a weight matrix, then the
weighted Hamming distance between the code words f(x) and M(y, ·) is given by

distWH(f(x),M(y, ·)) =

B∑
b=1

W (y, b)Jfb (x) 6= M (y, b)K,

where J K is the indicator function.

Definition 19. (Weighted Loss-based Distance Function) Let M be a coding matrix,
let x ∈ X be an instance with a code word f(x) ∈ C, and let M(y, ·) ∈ C be the code
word for the class y ∈ Y resulting fromM . IfW ∈ [0, 1]K×B is a weight matrix and L is
some loss function, then the weighted loss-based distance between the code words f(x)

and M(y, ·) is given by

distWL(f(x),M(y, ·)) =

B∑
b=1

W (y, b)L (fb (x) ,M (y, b)) .

In this chapter we are interested in weighting base classifiers of the scoring type. This
leads us to focus on weighted loss-based decoding.

Weighted decoding algorithms differ in the way they determine the weight matrix W .
Escalera et al. (2008) utilize the following observation to construct W . Binary classifi-
ers may exhibit rather different generalization performances since each emerging binary
problem has different characteristics. In addition to that, the accuracy of binary classifi-
ers varies from class to class, because they are originally trained to separate positive and

4.1. Background and Related Work 49

negative super classes, i.e., Y +
b and Y −b for b ∈ {1, . . . , B}. As a result, Escalera et al.

(2008) propose that W (y, b) reflects the true positive rate of the classifier fb on class y.
To this end, the authors first defineB binary classification problems using a coding matrix
M ∈ {0, 1}K×B , and they then learn B binary classifiers fb. The true positive rates of
these binary classifiers over the classes in a validation set are then calculated as:

H(y, b) =
1

| Dy |
∑
x∈Dy

Jfb(x) = M(y, b)K, (4.1)

whereDy denotes the subset of the validation set consisting of all the validation instances
with class y. Having calculated H(y, b) for all classes and for all binary problems, the
weight matrix W is computed by normalizing H such that each row sums to 1. W (y, b)

therefore becomes:

W (y, b) =
H(y, b)∑B
b=1H(y, b)

. (4.2)

The rationale behind this normalization is to give an equal importance to each class, so
as to avoid that the multiclass classifier becomes biased towards any class. Different
frequencies for the classes in the data set may otherwise easily introduce such biases. In
this chapter, we adopt the same approach. For brevity, we shall refer to this ‘performance
weighted’ decoding algorithm as Perf.Weighted.

Differently, in Smith and Windeatt (2010) it is advocated that W (y, b) should capture
the information on how well a binary classifier fb separates the members of class y from
the instances of the other classes. To reflect this, they propose to choose W (y, b) as
follows. First an unnormalized weight is defined as:

H(y, b) = max

0,

 ∑
x∈Dy
x′ /∈Dy

Cb(x)Cb(x
′)−

∑
x∈Dy
x′ /∈Dy

Cb(x)Cb(x
′)


 , (4.3)

where Cb is the correction function for the classifier fb which takes the value of 1 if fb
correctly classifies the instance, and 0 otherwise. Cb is the complement of Cb which is
given by Cb(x) = 1−Cb(x). Next, the weight W (y, b) is again obtained by normalizing
each row sum to 1, as in (4.2). For brevity, we shall refer to this ‘separability weighted’
decoding algorithm as Sep.Weighted. We note that both algorithms to estimate a weight
matrix W are essentially heuristic in nature; they both lack an underlying theoretical
principle of optimization.

We also note that the weighted decoding algorithms explained above were initially
proposed for the case where the binary classifiers are of discrete type. However, such
algorithms can easily be extended for use with binary classifiers of scoring type in the fol-
lowing way: for all b ∈ {1, . . . , B} the scoring classifier is first turned into a discrete one,

50 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

by choosing the class with the highest score as its binary class estimate (using some tie
breaker in case of equal scores). With the resulting discrete classifier, the given algorithms
become directly applicable.

Different from previous work in the literature, in this chapter we motivate the need for
weighting binary classifiers from two novel perspectives. First we shall present weighting
decoding as a metric learning task that is encountered in distance-based classification
algorithms, such as nearest neighbor classification (Kulis, 2012). To this end, we learn a
task specific distance function, where the task is to make the instance code word f(x) be
close to its true code word in the code space C, while leaving it far away from the other
code words in C. Therefore we actually aim at increasing the margin of the multiclass
classifier using a class decomposition scheme, which ultimately should lead to an increase
in the classifier’s accuracy.

Second, instead of weighting binary classifiers, we propose to weight the binary clas-
sification problems themselves by estimating how difficult it is to solve them, irrespect-
ive of the binary classification algorithm used. This gives rise to classifier independent
weighted decoding, which is a flexible approach and can be employed with any classific-
ation algorithm. In doing so, we view the binary classification problems as bipartitions
of a weighted graph where the nodes are the classes and the weighted edges indicate
how easy it is to discriminate the classes that they connect. In the following sections, we
first introduce the FP.Weighted decoding algorithm and then the BGP.Weighted decoding
algorithm, which embody these two weighted decoding ideas.

4.2 Fractional Programming Weighted Decoding

Recall that in Chapter 3 we emphasized the resemblance between the underlying ideas
in nearest neighbor (NN) classification and in the decoding phase of class decomposi-
tion. In the decoding phase the instance code word is assigned to the nearest class code
word in the coding space C. From this point of view, we argue that the idea of weighted
decoding can be tied to that of weighted nearest neighbor (Paredes and Vidal, 2000; Mar-
chiori, 2013). Following this, we further argue that the algorithms originally devised for
weighted nearest neighbor can be adapted to weighted decoding.

In their weighted nearest neighbor work, Paredes and Vidal (2000) proposed a class-
dependent weighted distance measure. The authors claim that the NN accuracy improves,
if the distance measure employed by the NN classifier: (1) yields small values for the
distances between instances coming from the same class, and (2) yields high values for
the distances between instances from different classes. With this in mind, the objective

4.2. Fractional Programming Weighted Decoding 51

function that they aim to minimize with respect to the weight matrix W , is chosen as:

J(W) =

∑
(x,y)∈D distWE(x, x=nn)∑
(x,y)∈D distWE(x, x6=nn)

, (4.4)

where D is the data set, x=nn is the nearest neighbor of x in its own class and x 6=nn is
again a nearest neighbor of x but in a different class. Here distWE stands for the weighted
Euclidean distance. This distance distWE between any instance x′ and an instance x that
is known to belong to class y ∈ Y , is given as follows:

distWE(x′, x) =

√√√√ R∑
j=1

W (y, j)(x′(j)− x(j))2 (4.5)

where R denotes the dimension of x′ and x (i.e., the number of features), and W is the
weight matrix of size K ×B.

Following (Paredes and Vidal, 2000), we adapt the objective function in (4.4) to the
weighted decoding problem. Our objective function then becomes:

J(W) =

∑
(xi,yi)∈D distWL(f(xi),M(yi, ·))∑
(xi,yi)∈D distWL(f(xi),M(y 6=i , ·))

, (4.6)

with W ∈ [0, 1]K×B subject to the constraints

B∑
b=1

W (y, b) = 1, ∀y ∈ Y.

Here yi ∈ Y is the class of the instance xi and y 6=i ∈ Y \ {yi} is the most confusing class
for xi. By the term most confusing class, we mean that it is not the true class of xi, but its
associated code word is nearest to f(xi) in the code space C considering the other class
code words in C (not using any weighting and employing a tie breaker rule if necessary).
As a result, we see that the most confusing class y 6= for an instance x is determined by
the binary classifiers.

We note that minimizing (4.6) can also loosely be interpreted as maximizing the mar-
gins of the binary classifiers for the instances using a class decomposition scheme. In
fact, (Sun et al., 2005) defined the margin of a multiclass classifier for a labeled instance
(xi, yi) using a class decomposition scheme as follows:

ρ(xi) = distWL(f(xi),M(y 6=i , ·))− distWL(f(xi),M(yi, ·)). (4.7)

A large value of ρ(xi) is obtained for a large first term and a small second term on the

52 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

right hand side. The same properties will help to make J(W) in (4.6) small. Thus we
somehow also aim at maximizing our multiclass classifier margins by weighting the bin-
ary classifiers. This in turn is expected to result in higher classification accuracy (Sun
et al., 2005).

The objective function defined in (4.6) is of fractional programming type (Sniedovich,
2011). To make the present chapter self-contained, we give a brief description of frac-
tional programming in the following subsection.

4.2.1 Fractional Programming

The problems in fractional programming involve optimizing the ratio of two real-valued
functions defined on a feasible set. More formally, such problems are given by (Sniedovich,
2011):

min
z∈Z
{r(z)}, where r(z) =

s(z)

t(z)
, (4.8)

where s and t are real-valued functions on a feasible set Z (which the set of all points that
satisfy the constraints). Here t is a positive function: t(z) > 0, ∀z ∈ Z.

If the functions s and t that form a fractional programming problem both are linear
functions, then the problem is referred to as linear fractional programming. Otherwise, it
is called nonlinear fractional programming (Sniedovich, 2011). Clearly, nonlinear frac-
tional programming is a generalization of linear fractional programming and it is of in-
terest to us throughout this chapter.

Among the algorithms aiming to tackle (4.8), the most common is the parametric
algorithm which reduces (4.8) to the following parametric problem:

min
z∈Z
{rλ(z)},where rλ(z) = s(z)− λt(z), λ ∈ R. (4.9)

Assuming (4.9) has at least one optimal solution for each λ ∈ R, it is known that there
exists a value for λ such that every optimal solution to (4.9) is also an optimal solution
for (4.8) and vice versa (Sniedovich, 2011, Appendix B). We now provide Dinkelbach’s
algorithm, which handles such a fractional programming problem by solving a sequence
of parametric problems as in Eq. (4.9).

4.2. Fractional Programming Weighted Decoding 53

Algorithm 1 Dinkelbach’s Algorithm

Input: Real-valued functions: s and t defined on a set Z, where t(z) > 0, ∀z ∈ Z.
A problem of fractional programming type: minz∈Z{ s(z)t(z) }.
Convergence tolerance εconv > 0.

Output: Optimal z ∈ Z which minimizes the given fractional programming problem.

1: Choose z(1) ∈ Z, l := 1, λ(1) := s(z(1))/t(z(1)),
λ(0) := λ(1) + 2εconv .

2: while λ(l−1) − λ(l) > εconv do
3: Find an optimal solution z(l+1) ∈ Z of min{s(z)− λ(l)t(z)}.
4: Let λ(l+1) = s(z(l+1))/t(z(l+1)).
5: l =: l + 1.
6: end while
7: Output z = z(l).

While executing Dinkelbach’s Algorithm, several auxiliary problems are generated
and need to be solved, see line 3 of the algorithm. It is proved that, irrespective of the
type of the functions s and t (linear or nonlinear), as the algorithm iterates, the sequence
of solutions of the generated auxiliary problems monotonically converges to an optimal
solution of the given fractional programming problem (Sniedovich, 2011). (Moreover, if
Z consists of a finite number of points, then the algorithm is guaranteed to terminate and
find an optimum for arbitrarily small εconv > 0.)

4.2.2 The FP.Weighted Decoding Algorithm

We now detail our proposed weighted decoding algorithm, FP.Weighted decoding.
First note that the objective function in Eq. (4.6), which is to be minimized, gives rise

to a fractional programming problem of the type (4.8). This problem can be written as:

min
W∈W

{r(W)} ,where r(W) =
s(W)

t(W)
=

∑
xi∈D distWL(f(xi),M(yi, ·))∑
xi∈D distWL(f(xi),M(y 6=i , ·))

. (4.10)

Here W is the feasible set, i.e.: the set of weight matrices that satisfy the constraints∑B
b=1W (y, b) = 1, ∀y ∈ Y and W (y, b) ∈ [0, 1], ∀y ∈ Y,∀b ∈ B.
When solving Eq. (4.10) with Dinkelbach’s Algorithm, the auxiliary problems we

encounter are of the following type:

min
W∈W

{
s(W)− λ(l)t(W)

}
, (4.11)

54 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

where λ(l) ∈ R is the (fixed) parameter at the iteration step l.

In this current form, the solution to (4.11), say W ∗, can be quite sparse. In other
words, only very few binary classifiers are often associated with non-zero weights per
class. Therefore, outputs of the vast majority of the binary classifiers can usually be
ignored, which in fact can lead to a shrinkage of the coding matrix, possibly causing the
error-correcting property of ECOC to disappear. In order to avoid such extreme weights,
we therefore employed negative entropy as a regularization term. Here, the use of entropy
as a regularization term was motivated by the fact that entropy measures how uniform
the weights are. In fact, a lower negative entropy tends to make the weights less extreme
(Calafiore and Ghaoui, 2014). As a result the auxiliary problems then take the following
form

min
W∈W

s(W)− λ(l)t(W) + h
∑
y∈Y

B∑
b=1

W (y, b) logW (y, b)

 . (4.12)

The parameter h ≥ 0 governs the relative importance of the regularization term compared
with the original subproblem. The larger this coefficient is, the more equal the weights
become, as the negative entropy function gets its minimum value for equal weights. We
also emphasize that adding a regularization term to the auxiliary problems in Dinkelbach’s
Algorithm does not disturb the convergence of the solutions, provided that the added term
is convex (Gugat, 1998). In our case, the added regularization term is convex. In fact, each
variable W (y, b) in this sum only appears in a single expression W (y, b) logW (y, b). As
a consequence, to show that this regularization term is convex it is sufficient to check
convexity of the function p log p for p = W (y, b) ∈ [0, 1]. Clearly, its second derivative
equals

d2

dp2
p log p =

1

p
,

which is indeed nonnegative, proving convexity.

For a given value of λ(l), the constrained optimization problem (4.12) can be rewritten
in the following form

min
W∈W

s(W)− λ(l)t(W) + h
∑
y∈Y

B∑
b=1

W (y, b) logW (y, b)

 . (4.13)

The term s(W) in Eq. (4.13) can be expressed as

s(W) =
∑

(xi,yi)∈D

distWL(f(xi),M(yi, ·)) =
∑
y∈Y

∑
xi∈Dy

distWL(f(xi),M(yi, ·)).

4.2. Fractional Programming Weighted Decoding 55

The term t(W) can likewise be expressed as

t(W) =
∑

(xi,yi)∈D

distWL(f(xi),M(y 6=i , ·)) =
∑
y∈Y

∑
xi∈Dy

distWL(f(xi),M(y 6=i , ·)).

As a result we can write the expression (4.13) as:

min
W∈W

{∑
y∈Y

(∑
xi∈Dy

(
distWL(f(xi),M(yi, ·))− λ(l)distWL(f(xi),M(y 6=i , ·))

)
+

(4.14)

+ h

B∑
b=1

W (y, b) log(W (y, b))

)}
.

Using the definition of a weighted loss-based function given at the beginning of this
chapter, (4.14) then takes the form

min
W∈W

{∑
y∈Y

(∑
xi∈Dy

(B∑
b=1

W (y, b)L(fb(xi),M(yi, b))− λ(l)
B∑
b=1

W (y, b)L(fb(xi),M(y 6=i , b))
)

+ h

B∑
b=1

W (y, b) log(W (y, b))

)}
, (4.15)

where L is some loss function. Rearranging the summation for the second term in the summand,
this optimization problem can be further expressed as

min
W∈W

{∑
y∈Y

(B∑
b=1

W (y, b)
(∑
xi∈Dy

L(fb(xi),M(yi, b))− λ(l)
∑

{xi /∈Dy | y
6=
i =y}

L(fb(xi),M(yi, b))
)

+ hW (y, b) log(W (y, b))

)}
.

(4.16)

To highlight the structure of this optimization problem, it now is useful to define a function F (y, b)

as follows:

F (y, b) =
∑
xi∈Dy

L(fb(xi),M(yi, b))− λ(l)
∑

{xi /∈Dy | y
6=
i =y}

L(fb(xi),M(yi, b)). (4.17)

The index of the second sum in (4.17) refers to the instances in the data set for which the most
confusing class is y. Notice that F (y, b) does not involve the weights in W . Regardless of the
loss function chosen, F (y, b) consists of two competing terms. The first term can be read as the
total loss that the binary classifier fb makes over the members of Dy , which reflects the heuristic
minimization goal formulated in (Escalera et al., 2008). The second term quantifies how much the

56 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

classifier fb discriminates the members of Dy from the other classes, which reflects the heuristic
maximization goal motivated in (Smith and Windeatt, 2010). As the first term is to be minimized
and the second term to be maximized, they are combined into the single expression F (y, b), to be
minimized, by supplying the second term with a minus sign and the balancing parameter λ(l).

With this definition of F (y, b), we arrive at the following form of the (weighted) auxiliary
minimization problem:

min
W∈W

{∑
y∈Y

B∑
b=1

(
W (y, b)F (y, b) + hW (y, b) log(W (y, b))

)}
. (4.18)

As a result, if F (y, b) is large, which is to say that the output of the classifier fb is closer to the b-th
bit of the code word of the most confusing class other than that of the true class y, then minimization
of the objective function promotes punishing the classifier fb by reducing the corresponding entry
W (y, b). In case F (y, b) is small, then minimization of the objective function promotes rewarding
the classifier fb by increasing W (y, b). (Recall that the optimization space W is such that the
weights for a fixed choice of y must sum to 1, inducing a relative trade off of the terms F (y, b).)
The regularization term with the parameter h acts to avoid that weights become zero too easily.

Interestingly, the resulting problem (4.18), is of the same form as the one encountered in
(Domeniconi et al. (2007)), in which the authors are concerned with obtaining a weight vector
per cluster so that the weighted distance between each instance and the center of its true cluster is
minimal compared to those obtained from the remaining cluster centers. Naturally, the proposed
solution to (4.18) can be obtained along similar lines as in (Domeniconi et al. (2007)). A detailed
solution strategy for this problem (4.18) is as follows.

To solve (4.18), we first disregard the constraints W (y, b) ∈ [0, 1], ∀y ∈ Y, ∀b ∈ B; we will
verify them later. For the moment, we only focus on the constraints

∑B
b=1W (y, b) = 1, ∀y ∈ Y .

We then set up the corresponding Lagrangian

L =
∑
y∈Y

{
B∑
b=1

(
W (y, b)F (y, b) + hW (y, b) log(W (y, b))

)
+ λy

(
1−

B∑
b=1

W (y, b)
)}

,

(4.19)
in which λy (for y ∈ Y) are the (unconstrained) Lagrange multipliers.

Setting the partial derivatives of L with respect to each of the weights W (y, b) to zero, gives
the following equations (for all y ∈ Y and b = 1, . . . , B):

F (y, b) + h logW (y, b) + h− λy = 0, (4.20)

together with the earlier constraints (for all y ∈ Y):

1−
B∑
b=1

W (y, b) = 0. (4.21)

Solving Eq. (4.20) with respect to W (y, b) gives:

W (y, b) = exp(−F (y, b)

h
+
λy
h
− 1) = exp(−F (y, b)

h
) exp(

λy
h
− 1)

4.2. Fractional Programming Weighted Decoding 57

=
exp(−F (y, b)/h)

exp(1− λy/h)
. (4.22)

Plugging (4.22) into Eq. (4.21) yields:

1−
B∑
b=1

exp(−F (y, b)/h)

exp(1− λy/h)
= 0.

Solving this with respect to λy leads to:

λy = −h log

B∑
b=1

exp((−F (y, b)/h)− 1).

Finally, we substitute this into Eq. (4.22) to obtain the optimal weights W ∗(y, b), which are then
found to be equal to:

W ∗(y, b) =
exp (−F (y, b)/h)

exp
(

1 + log
(∑B

b=1 exp ((−F (y, b)/h)− 1)
))

=
exp (−F (y, b)/h)∑B
b=1 exp (−F (y, b)/h)

. (4.23)

Note that the latter expression is easily verified to satisfy the constraints that the weights per class
sum up to 1. What is also obvious from the exponential terms in the expression, is that these weights
are all strictly positive. And as they all sum up to 1 per class, they individually are also strictly less
than 1 (with B > 1). This verifies that the conditions we initially disregarded are automatically
satisfied. It remains to verify that the stationary point of the Lagrangian we have computed, indeed
provides a minimum for the optimization problem we set out to solve. For this, we note that the left-
hand side expressions in (4.20) with λy = 0 give (unconstrained) partial derivatives of the criterion
function to be minimized. If some W (y, b) tends to zero then the corresponding partial derivative
tends to −∞, indicating maxima to occur at the boundary of the feasible set and hence a minimum
to be contained in the interior ofW .

With the explicit solution (4.23) for the auxiliary minimization problem (4.12), Dinkelbach’s
Algorithm to optimize the objective function (4.6) can be made operational. (Recall that this op-
timization is approximate, as we have included a regularization term into the auxiliary problem
(4.12).)

The resulting algorithm gives a weight estimation to be used in the FP.Weighted Decoding
Algorithm, which is then readily set up. This weight estimation algorithm is explicitly given in
pseudocode as Algorithm 2.

Note that f(x) in line 5 of the “Weight estimation for the FP.Weighted Decoding Algorithm”
is the instance code word of the instance x ∈ D. Indeed, after learning the binary classifiers in the
first for-loop (line3), we let them run over the full training set. As a result, each training instance
x is transformed into its instance code word f(x) = (f1(x), f2(x), ..., fB(x)) in code space C. In
the rest of the algorithm only these instance code words are used, not the individual instances x. We
thereby make use of the underlying idea of instance code words presented in the Chapter 3, while

58 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

learning a weighted distance measure for the decoding phase.

Algorithm 2 Weight estimation for the FP.Weighted Decoding Algorithm
Input: Training set D, coding matrix M ∈ {0, 1}K×B ,

binary classification algorithm A, regularization parameter h,
loss function L, convergence tolerance εconv .

Output: Optimal weight matrix W ∈ [0, 1]
K×B such that

∑B
b=1W (y, b) = 1, ∀y ∈ Y .

1: for b := 1 to B do
2: Relabel D w.r.t. the super classes of the partition M(·, b).
3: Learn a binary classifier fb using A on the relabeled D.
4: end for
5: For all instances x in D, use the binary classifiers fb (b = 1, . . . , B) to form the

instance code words: f(x) = (f1(x), ..., fB(x)).
6: Define s(W) =

∑
xi∈D distWL(f(xi),M(yi, ·)),

and t(W) =
∑
xi∈D distWL(f(xi),M(y 6=i , ·))

which make up a fractional programming problem minW∈W

{
s(W)
t(W)

}
.

7: Choose W (1) ∈ W , l := 1, λ(1) := s(W (1))/t(W (1)),
λ(0) := λ(1) + 2εconv .

8: while λ(l−1) − λ(l) > εconv do
9: for y ∈ Y do

10: for b := 1 to B do
11: Compute F (y, b) as in Eq. (4.17).
12: W (l+1)(y, b) := exp(−F (y,b)/h)∑B

b=1 exp(−F (y,b)/h)
.

13: end for
14: end for
15: Let λ(l+1) = s(W (l+1))/t(W (l+1)).
16: l := l + 1
17: end while
18: Output W = W (l).

4.3 Bipartite Graph Partitioning Weighted Decoding

Weighted decoding algorithms in the literature, and also the FP.Weighted Decoding Algorithm just
presented above, use weight matrices which depend on the results of the binary classifiers employed.
As an alternative, we now present a classifier independent weighted decoding algorithm. To achieve
this, we weight the binary classification problems themselves, by estimating how difficult it is to
solve them. In particular, we explore the viewpoint that the closer the distance between a positive
super class and a negative super class is, the more difficult it is to handle the corresponding binary
classification problem. This then results in classifier independent weighting, in what is called the

4.3. Bipartite Graph Partitioning Weighted Decoding 59

BGP.Weighted Decoding Algorithm. The framework of bipartite graph partitioning offers a natural
way to explain its key concepts and underlying ideas in more detail.

With a given multiclass classification problem, we can associate a weighted undirected com-
plete graph G = (Y,E,Q) for which the set of vertices Y corresponds to the classes in the data
set. The set of edges E is defined to consist of all the possible pairs of vertices, and Q is a sym-
metric weight matrix of size K ×K (where K = |Y | denotes the number of classes). To qualify
as a weight matrix, we require that the entries of Q on the main diagonal are all zero, while the
off-diagonal entries of Q are all positive. We interpret each entry Q(y, y′) as the distance between
the classes y and y′ from Y . Therefore, the matrix Q is also called the class distance matrix. Each
binary classification problem naturally corresponds to a binary partition of the class set Y and to a
bipartition of the weighted graph G, and vice versa. This has also been also pointed out in Chapter
2, where it was explained that a class decomposition scheme SP (Y) defines a set of binary class
partitions of Y , i.e., Pb(Y). As a result, each Pb(Y) defines a cut: (Y +

b , Y
−
b). Using the weighted

graph G and the class distance matrix Q, the cost associated with a cut can then be defined as
follows:

cost(Y +
b , Y

−
b) =

∑
y∈Y +

b

∑
y′∈Y−

b

Q(y, y′), (4.24)

where Y +
b and Y −b are the negative and the positive super class of the binary class partition Pb(Y),

and Q(y, y′) is the distance between the classes y and y′. We argue that this cost can serve to
quantify the difficulty of solving the b-th binary classification problem, as it expresses a degree of
dissimilarity between the two subsets involved in the cut, i.e., in the partition of the weighted graph
(Shi and Malik (2000)).

It is common to further normalize the cost of the cut, by dividing the unnormalized cost (4.24)
by the number of edges crossing the cut, such as to make it invariant to the size of the super classes
Y +
b and Y −b . Hence the normalized cost becomes

Ncost(Y +
b , Y

−
b) =

1

| Y +
b || Y

−
b |

∑
y∈Y +

b

∑
y′∈Y−

b

Q(y, y′), (4.25)

where Ncost stands for the normalized cost. This gives rise to what is called Bipartite Graph Parti-
tioning based weighting, in short BGP.Weighting, which can readily be employed for decoding.

For example, for a four-class classification problem with an exhaustive coding matrix M , the
(undirected) weighted graph G of the classes and the corresponding value of Ncost for the first
induced binary classification problem, is illustrated in Figure 4.1.

60 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

Figure 4.1: A weighted graph for a four-class classification problem, together with the
normalized cost Ncost which corresponds to the first induced binary classification prob-
lem of the exhaustive coding matrix.

The normalized cost shown in Figure 4.1 is calculated as:

Ncost({y1}, {y2, y3, y4}) =
1

1 · 3

4∑
i=2

Q(1, i).

The entries of the weight matrix W are assigned as:

W (y, b) = Ncost(Y +
b , Y

−
b). (4.26)

for all y ∈ Y and b = 1, . . . , B Algorithm 3. This weight estimation procedure for BGP.Weighted
Decoding is summarized in 3. Once the weights have been computed, the instance classification
is realized according to the decoding function of Definition 5 (see Chapter 2), using the weighted
loss-based distance function from Definition 19.

Algorithm 3 Bipartite Graph Partitioning Weighted decoding algorithm
Input: Training set D, class distance measure: distic
Output: Weight matrix: W ∈ [0,+∞)K×B

1: for b ∈ {1, ..., B} do
2: Ncost(Y +

b , Y
−
b) := 1

|Y +
b ||Y

−
b |

∑
y∈Y +

b

∑
y′∈Y −b

distic(y, y′);

3: for y ∈ Y do
4: W (y, b) := Ncost(Y +

b , Y
−
b);

5: end for
6: end for
7: Output W .

Here, the question that arises naturally is how to compute the distance between two classes:
what are appropriate choices for an inter-class distance measure distic to build the class distance

4.4. Experiments 61

matrix Q through Q(y, y′) = distic(y, y′) for all y, y′ ∈ Y . To answer this, one can employ
distance measures from clustering, as explained in the following section.

4.3.1 Inter-Class Distance Measures

Inter-class distance measures can be readily borrowed from clustering, by simply viewing classes as
clusters. We shall consider four particular inter-class distances: single-link, complete-link, average-
link, and centroid distances; see (Tan et al., 2006). Pictorially, these four inter-class distances are
shown in Figure 4.2. The single-link distance between two classes is the distance between the
closest instances of the two classes. The complete-link distance between two classes is the distance
between the instances that are farthest apart. The average-link distance between two classes is the
average of all the distances between the instances of two classes, and finally the centroid distance
between two classes is the distance between the two class centroids.

These four inter-class distances lead to four variants of the proposed BGP.Weighted Decod-
ing algorithm. We refer to them as BGP.Sing, BGP.Comp, BGP.Aver and BGP.Cent, to reflect the
single-link, the complete-link, the average-link and the centroid distances between classes, respect-
ively.

Figure 4.2: Inter-class distances.

4.4 Experiments

We tested the proposed weighted decoding algorithms, FP.Weighted Decoding and BGP.Weighted
Decoding (with its four variants), on a number of UCI datasets which are summarized in Table 3.1
in Chapter 3. For these datasets, we compared these two novel algorithms against conventional
(unweighted) decoding, and also against two state-of-the-art weighted decoding algorithms from
the literature: Perf.Weighted (Escalera et al., 2008) and Sep.Weighted (Smith and Windeatt, 2010).

62 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

4.4.1 Settings

For each induced binary problem, we first learned a binary classifier fb using the training set D.
We then computed the weight matrix W for each of the weighted decoding algorithms using the
training set D again. This setting enabled us to facilitate a fair comparison of the weighted de-
coding algorithms, as each considers the same binary classifiers and the same training set when
computing a weight matrix for each dataset. Thus we promote that the differences in accuracy arise
predominantly from using different weights in the decoding phase.

In our experiments, we opted for exhaustive coding matrices (eECOC) (Dietterich and Bakiri,
1995), for all the datasets with less than 10 classes, for all of the (weighted) decoding algorithms.
For the datasets with K = 10 classes, we used a coding matrix M which consists of all balanced
binary class partitions. That is: each column of M coincides with a binary class partition for
which the sizes of the super classes are equal, i.e.: |Y +

b | = |Y −b |, ∀b ∈ {1, . . . , B}. In total,
B = K!

2(K
2
!)2

= 126 class partitions are obtained in this way, equaling the number of columns of

the coding matrix M (Smirnov et al., 2009). The reason to choose such coding matrices is that
they hold the property of having equidistant rows: the Hamming distance for any pair of rows of
these coding matrices is the same. The FP.Weighted Decoding algorithm is thought to work best
with a coding matrix with this property, because then the most confusing class, depends only on
the accuracy of the binary classifiers. Otherwise, the (unbalanced) coding matrix being employed
could introduce a bias when computing the most confusing classes. Finally, for the BGP.Weighted
decoding, we employed the Euclidean distance on the feature spaceX when computing single-link,
complete-link, average-link and centroid distances between classes.

As our binary classification algorithm in the experiments, we employed logistic regression. We
used the square loss function in the weighted decoding (Flach, 2012). We note that using square
loss is legitimate in the FP.Weighted Decoding as it always returns positive values. Therefore,
the denominator in the objective function (4.6) cannot be negative, which is required by fractional
programming. As for the inputs of FP.Weighted Decoding, we set the convergence tolerance εconv
to 0.001 and tuned the regularization parameter h using internal cross validation in each experiment.
For this purpose, we considered the set {0.01, 0.1, 1, 10, 100} from which h takes its values. More
precisely, for each value for h from the set, we performed 9-fold cross-validation (the tenth fold was
set apart as the test set for the external cross validation), and we obtained the accuracy by averaging
the accuracies over the (internal) folds. The regularization parameter h giving the highest averaged
accuracy was then chosen to be used for the (external) cross-validation.

The method of evaluation is 10-fold cross validation. We note that for the purpose of maintain-
ing a fair comparison among the weighting algorithms, in performing 10-fold cross validation we
ensured that each weighting algorithm used the same folds for training and the same fold for testing
in each run. For the Pendigits and the Optdigits datasets, however, where the training set and the
test set are given separately, the method of evaluation was the hold-out method. Table 4.1 shows the
results of the 10-fold cross validation experiments together with the hold-out experiments for the
Pendigits and the Optdigits datasets. For the 10-fold cross validation experiments, the highlighted
results indicate that the result is found statistically significantly better than that of the runner-up,
according to the two-tailed paired t-test at significance level 0.05.

4.4. Experiments 63

Table 4.1: Accuracies (in percentage) obtained using different weighted decoding al-
gorithms when the base classifier is logistic regression. Statistically significant results are
highlighted.

Dataset Unweighted FP.Weighted Perf.Weighted Sep.Weighted BGP.Cent BGP.Sing BGP.Comp BGP.Aver
Balance 86.66 87.83 91.32 91.44 87.16 86.95 86.88 86.88
Thyroid 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8

Iris 96.66 98 97.33 97.33 97.33 97.33 96.66 97.33
Car 81.13 79.77 82.86 82.63 78.22 78.22 77.47 77.65

Vehicle 79.25 81.02 79.25 79.49 79.5 79.32 79.42 79.66
Glass 60.87 63.24 59.52 59.44 61.92 63.13 61.69 61.17

Dermatology 95.49 95.49 95.49 95.49 94.32 94.32 94.02 94.32
Segment 90.87 93.05 91.94 92.29 91.9 91.36 91.33 91.86

Ecoli 83.92 84.71 84.5 85.09 84.98 84.01 84.22 84.52
Zoo 91.28 92.5 92.03 92.13 91.13 91.43 91.39 91.32

Mfeat-mor 63.6 70.55 70.4 72.25 60.25 60.25 60.25 60.25
Pendigits 83.3 86.96 84.27 84.24 83.79 83.81 83.67 83.73
Optdigits 92.59 93.65 93.09 93.21 92.65 92.71 92.59 92.65

4.4.2 Evaluation of the Results

Table 4.1 reveals that the FP.Weighted decoding algorithm achieves the highest accuracy for seven
UCI datasets (Iris, Vehicle, Glass, Pendigits, Segment, Zoo, and Optdigits) out of the 13 data-
sets considered. Of these, the accuracies obtained from Vehicle, Glass, Segment, and Zoo were
found to be statistically significantly superior, based on the t-test at level 0.05. None of the four
BGP.Weighted decoding variants, could achieve the highest accuracy for any of the datasets, though
they outperformed the conventional unweighted decoding algorithm for nine datasets. However, the
other weighted decoding algorithms, including FP.Weighted decoding, consistently outperformed
the BGP.Weighted decoding variants.

Table 4.2: The average rank of the classifiers in Table 4.1.

Classifier Unweighted FP.Weighted Perf.Weighted Sep.Weighted BGP.Cent BGP.Sing BGP.Comp BGP.Aver
Av.rank 6.26 2 3.65 2.84 4.69 4.96 6.34 5.23

Taking the magnitude of the differences between the accuracies into account, we arrive at the
following conclusions. Table 4.1 reveals that using FP.Weighted decoding in class decomposition,
may improve the accuracy by up to 7%, if the binary classification algorithm is logistic regression
and the square loss-based distance function is opted for in the decoding phase. On the other hand,
when using BGP.Weighted decoding, the improvement in accuracy lies only in the range of 1%

to 3%. When it comes to comparing FP.Weighted decoding and the two state-of-the-art decoding
algorithms Perf.Weighted and Sep.Weighted, we found that FP.Weighted decoding increased the
accuracy in the range of 1% to 3%.

In addition to comparing the proposed weighted decoding algorithms per dataset, we also com-
pared them over all of the considered datasets. For this purpose we conducted the Friedman test and
the Nemenyi test (Demsar, 2006). We first computed the average ranks of the weighting algorithms
over the datasets. This is shown in Table 4.2. In order to show that the average ranks shown in

64 Chapter 4. Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning

Table 4.2 are significantly different from the mean rank of 4.5, we conducted the Friedman test
(Demsar, 2006). The Friedman test statistic FF was found to be 7.93. This statistic is distributed
according to the F-distribution with (7, 84) degrees of freedom under the null hypothesis that the
observed differences among the average ranks are not significant. The critical value of F (7, 84)

for α = 0.05 is 2.12. Since the Friedman test statistic is larger than the critical value, we reject
the null hypothesis. Therefore the measured differences between the average ranks of the weighted
and unweighted decoding algorithms are found to be significant. This in turn implies that using
different weighted algorithms in the decoding phase, leads to obtaining different accuracies (with
FP.Weighted decoding showing the best performance).

Table 4.3 shows the absolute differences between the average ranks in Table 4.2. Based on
the two-tailed Nemenyi test, the differences between the accuracies of two classifiers over multiple
datasets is significantly different, if the difference between the corresponding average ranks exceeds
the critical difference (Demsar, 2006). For 8 classifiers and 13 datasets, the critical difference is 2.91

for the significance level 0.05. In Table 4.3, the absolute differences that are larger than the critical
difference of 2.91 are highlighted. Indeed, the difference between the average rank of FP.Weighted
and that of unweighted decoding exceeds the critical difference, hence is highlighted. The same
conclusion holds for Sep.Weighted decoding versus unweighted decoding. Also the performance
of all of the variants of BGP.Weighted decoding but BGP.Cent is significantly worse than that of
FP.Weighted decoding. On the other hand, the conducted Nemenyi test is not powerful enough to
detect a significant difference between the other decoding algorithms.

Table 4.3: Average rank differences for Table 4.1 with statistically significant values high-
lighted.

Algorithm Unweighted FP.Weighted Perf.Weighted Sep.Weighted BGP.Cent BGP.Sing BGP.Comp BGP.Aver
Unweighted 0 4.26 2.61 3.42 1.57 1.3 0.8 1.03
FP.Weighted 4.26 0 1.65 0.84 2.69 2.96 4.34 3.23

Perf.Weighted 2.61 1.65 0 0.81 1.04 1.31 2.69 1.58
Sep.Weighted 3.42 0.84 0.81 0 1.85 2.12 3.5 2.39

BGP.Cent 1.57 2.69 1.04 1.85 0 0.27 1.65 0.54
BGP.Sing 1.3 2.96 1.31 2.12 0.27 0 1.38 0.27

BGP.Comp 0.08 4.34 2.69 3.5 1.65 1.38 0 1.11
BGP.Aver 1.03 3.23 1.58 2.39 0.54 0.27 1.11 0

4.5 Conclusion

In this chapter, we developed and presented two novel weighted decoding algorithms: the FP.Weighted
Decoding Algorithm and the BGP.Weighted Decoding Algorithm. They aim to deal with the prob-
lem of difficult binary classification problems from the perspective of weighted decoding. Taking
its root in weighted nearest neighbor algorithms, the FP.Weighted Decoding Algorithm employs a
metric learning approach, where the goal is to learn a task-specific distance measure. Here, the task
that FP.Weighted Decoding attempts to accomplish, is to reduce the distance between an instance
code word and its true class code word, while at the same time increasing the distance between the
instance code word and the other class code words. The optimization problem that arises in ac-

4.5. Conclusion 65

complishing this task, is of fractional programming type, and we handle it using regularization and
Dinkelbach’s Algorithm. In doing so, FP.Weighted Decoding increases the margin of the multiclass
classifier, thus indeed leads to a significant increase in the accuracy obtained from the multiclass
classifier. The performance of FP.Weighted maximizes when the used coding matrix has equidistant
rows.

The BGP.Weighted Decoding Algorithm weights the binary classification problems associated
with the class partitions induced by the coding matrix themselves, rather than weighting the binary
classifiers fb. This gives rise to a classifier independent weighting approach. For this propose, we
cast the binary problems as bipartitions of the weighted graph of classes, where the weight on an
edge indicates how difficult it is to discriminate the classes (vertices) that the edge connects. The
cost of the bipartitions, which are computed by summing the weights of the crossed edges, becomes
the weight of the corresponding binary problem.

Using 13 UCI datasets, we compared the FP.Weighted Decoding Algorithm and the BGP.Weighted
Decoding Algorithm with the baseline (the conventional unweighted decoding) and with two state-
of-the-art weighted decoding algorithms. The conducted tests demonstrated that FP.Weighted de-
coding achieved the best accuracy on 7 out of the 13 datasets. The BGP.Weighted decoding al-
gorithm, on the other hand, was only found to be better than unweighted decoding for just two
datasets. When it comes to compare FP.Weighted decoding and BGP.Weighted decoding with the
two state-of-the-art weighted decoding algorithms, we found that the improvement in accuracy was
relatively small and not statistically significant for the conducted experiments.

5
Conformal ECOC Machines

This chapter is based on the following publication:
Ismailoglu, F., Smirnov, E. and Peeters, R. (2015). Conformal ECOC Machines. In Proc of IEEE
27th International Conference on Tools with Artificial Intelligence (ICTAI), pages 361–368.

This chapter addresses the research question related to improving the computational perform-
ance of class decomposition schemes for reliable classification. The framework employed for reli-
able classification is the conformal framework (Vovk et al., 2005; Shafer and Vovk, 2008). It makes
possible to compute confidence values for binary classifications to control the classification error.
This is crucial for risk-sensitive applications such as drug discovery, medical diagnosis, or financial
analysis (Papadopoulos, 2008).

Despite of the importance of the conformal framework, it was implemented for two class de-
composition schemes only: the one-vs-all scheme and one-vs-one scheme (Vovk et al., 2005; Shi
et al., 2013). While being valid, these implementations are computationally inefficient. There-
fore, in this chapter we introduce two new implementations for conformal classification, namely
mean-based conformal class decomposition machines (MCCD machines) and Poisson conformal
class decomposition machines (PCCD machines). The MCCD machines and PCCD machines can
employ any type of class decomposition schemes and are computationally efficient.

The chapter consists of 5 sections. The background information and related work are provided
in Section 5.1. Section 5.2 introduces the conformal framework. The MCCD and PCCD machines
are described in Section 5.3. Section 5.4 provides the experiments and Section 5.5 concludes the
chapter.

5.1 Background

Conformal framework was proposed to provide confidence values to individual predictions in ma-
chine learning (Vovk et al., 2005; Shafer and Vovk, 2008). This is important when one needs to
know to what extent s/he can rely on the classification estimated for any individual instance. Un-
like discrete classifiers which only output most likely class ŷ for a query instance x, the conformal
framework allows for outputting a set Γε of classes so that the true class y of x is a member of Γε

with a probability of at least 1 − ε where ε is a significance level. The conformal framework can

5.2. Conformal Framework 67

be applied for any type of classifiers (Vovk et al., 2005): nearest neighbors (Papadopoulos et al.,
2011), SVM (Shi et al., 2013), neural networks (Papadopoulos, 2008), etc. In addition, the con-
formal framework can be used in the online mode and offline mode of training (Balasubramanian
et al., 2014).

Due to the appealing properties of the conformal framework mentioned above, it has attracted an
increasing attention and has been used extensively in various domains in combinations with various
classification techniques. Ahlberg et al. (2015), for example, recently used conformal classifiers
for the purpose of drug discovery where the risk analysis is of crucial importance. In medicine the
conformal framework was employed to prove the validity of individual predictions of some medical
conditions such as ovarian and breast cancers (Devetyarov et al., 2012) as well as acute abdominal
pain (Papadopoulos et al., 2009). In (Balasubramanian et al., 2014) it was shown how to apply the
conformal framework for time series analysis of network traffic flows. The reader is referred to
(Balasubramanian et al., 2014) to acknowledge some other uses of the framework.

Despite the increasing interest in the conformal framework, its use within class decomposition
schemes remains elusive. Vovk et al. (2005) allocated a brief section on combining conformal
framework and class decomposition schemes. They proposed implementations for the one-vs-one
scheme1 and one-vs-all scheme only. While being valid, these implementations are computationally
inefficient. Shi et al. (2013) improved the computational efficiency, however, with a price of less
accurate conformal classification. The reader is referred to Section 5.3 where the work of (Vovk
et al., 2005) and (Shi et al., 2013) is described in detail.

This chapter addresses the aforementioned problems of combining the conformal framework
with class decomposition schemes. It introduces two implementations for conformal prediction
based on class decomposition schemes that target the following objectives:

1. to generalize the implementation given by Vovk et al. (2005) for any class decomposition
scheme, and

2. to reduce the computational complexity.

5.2 Conformal Framework

The conformal framework was proposed by Vovk et al. (2005) to provide confidence values to
individual class predictions. The confidence values allow producing a class region (class set)
Γε(D,xN+1) ⊆ Y for any query instance xN+1 ∈ X and significance level ε ∈ [0, 1] such
that Γε contains the true class yN+1 ∈ Y of xN+1 with a probability at least 1− ε. In this way the
classification error is bounded by ε in a long run; i.e. it can be controlled.

The conformal framework constructs the class region Γε(D,xN+1) ⊆ Y as follows. It iterates
over the classes y ∈ Y by considering each of them as an estimate of the true class of the query in-
stance xN+1. For any class y the framework first updates the data by adding the instance (xN+1, y)

to the data, i.e. D′ = D ∪ {(xN+1, y)}. Then, it computes a nonconformity score αn for any

1The one-vs-one scheme is an example of the ternary class decomposition schemes (Allwein et al., 2000).
The ternary class decomposition schemes are not considered in this thesis and that is why in the rest of this
chapter we do not treat the conformal implementation based the the one-vs-one scheme.

68 Chapter 5. Conformal ECOC Machines

instance (xn, yn) ∈ D′ that indicates how unusual is the instance (xn, yn) from the instances in
D′ \ {(xn, yn)}. Finally, the framework computes the p-value for the class y equal to the propor-
tion of the instances in the set D′ which nonconformity scores αn are greater than or equal to the
nonconformity score of the instance (xN+1, y). The class y is added to Γε(D,xN+1) ⊆ Y if its
p-value is greater than the significance level ε.

To compute the nonconformity scores a nonconformity function has to be designed. The non-
conformity function is of type A : (X × Y)(∗) × (X × Y) → R+ ∪ {+∞} 2. Given data
D ∈ (X ×Y)(∗) and an instance (x, y) ∈ (X ×Y), A yields a value α ∈ R+ ∪{+∞} indicating
how strange the instance (x, y) relative to those in D. The nonconformity function is usually re-
lated to the classifier employed (cf. Vovk et al. (2005)). The easiest choice in this case is the general
nonconformity function given below.

Definition 20. (General Nonconformity Function) General nonconformity function A is a func-
tion from (X × Y)∗ × (X × Y) to R+ ∪ {+∞} that maps a set D ∈ (X × Y)∗ and an instance
(x, y) ∈ (X × Y) to:

α =
∑

y′∈Y \{y}

sy′ , (5.1)

where sy′ is the score for class y′ ∈ Y produced by a scoring classifier f for x.

Armed with the definition of the general nonconformity function now we can describe the
conformal prediction algorithm (CP). The input of the algorithm consists of a significance level
ε ∈ [0, 1], a training data D, a nonconformity function A for a scoring classifier f , and a query
instance xN+1 ∈ X . The output consists of a class region Γε(D,xN+1) ⊆ Y for xN+1. To decide
whether to include a class y in Γε(D,xN+1), CP executes the following steps. First, it constructs
training set D′ by adding the labeled instance (xN+1, y) to D. Then, in a leave-one-out manner
it computes the nonconformity score αn for each instance (xn, yn) ∈ D′. Finally, the algorithm
sets the p-value py associated with class y for the instance xN+1. The value py is computed as
the proportion of the instances in the set D′ with nonconformity scores αn that are greater than
or equal to the nonconformity score αN+1 of the instance (xN+1, y). We note that this p-value
is associated with the null hypothesis that the dataset D can be extended by the labeled instance
(xN+1, y) according to the unknown probability distribution p. Once the value py has been set, the
conformal prediction algorithm includes the class y in Γε(D,xN+1) if py is greater than the given
significance level ε. The conformal prediction algorithm is given in Algorithm 4.

2(X × Y)(∗) denotes the set of all multi-sets defined over X × Y .

5.3. Conformal Class Decomposition Machines 69

Algorithm 4 Conformal Prediction Algorithm

Input: Significance level ε,
training data D,
query instance xN+1,
nonconformity function A for scoring classifier f .

Output: Class region Γε(D,xN+1).

1: Set class region Γε(D,xN+1) equal to ∅.
2: for each class y ∈ Y do
3: Set D′ equal to D ∪ {(xN+1, y)}.
4: for n := 1 to N + 1 do
5: Set nonconformity score αn equal to A(D′\{(xn, yn)}, (xn, yn)).
6: end for
7: Set p-value py equal to #{n=1,...,N+1|αi≥αN+1}

N+1 .
8: Include class y in Γε(D,xN+1) if py > ε.
9: end for

10: Output class region Γε(D,xN+1).

The conformal prediction algorithm has to be valid and efficient. The algorithm is said to be
valid if the class regions include the true class of the query instances with the probability of at least
1− ε. The algorithm is said to be efficient if the class regions are nonempty and small.

5.3 Conformal Class Decomposition Machines

This section proposes two new implementations for conformal classification that can employ any
type of class decomposition schemes, namely mean-based conformal class decomposition machines
(MCCD machines) and Poisson conformal class decomposition machines (PCCD machines). For
that purpose first a detailed description of relelated work is provided, the main problems are em-
phasized, and, then, the MCCD machines and PCCD machines are introduced.

5.3.1 Related Work

In the previous section we saw that the nonconformity function plays a central role in conformal
classification. If we can find such a function for a class decomposition scheme, then in principle
using the conformal prediction algorithm in Section 5.2 we can achieve conformal classification for
this scheme. Below we briefly describe the related work in this context.

Vovk et al. (2005) proposed a nonconformity function for the one-against-all class decomposi-
tion scheme. This function aggregates the binary nonconformity scores; i.e. the scores outputted by
the nonconformity functions related to the binary classifiers. We introduce the function as follows.

70 Chapter 5. Conformal ECOC Machines

Assume that we have a coding matrix M of a class decomposition scheme SP (Y) and a query in-
stance instance xN+1. Following the conformal prediction algorithm we hypothesize a class y ∈ Y
for xN+1 and form dataset D′ equal to D ∪ {(xN+1, y)}. Since we use the coding matrix M , we
form dataset D′b for any b ∈ {1, . . . , B} equal to {(xn,M(yn, b))|(xn, yn) ∈ D′}. We compute
the nonconformity score αM(y,b)

n,b for any instance (xn,M(yn, b)) ∈ D′b 3. If y is the class with
index b1 ∈ {1, . . . , B}, then the aggregated nonconformity function outputs for instance (xn, yn)

an nonconformity score αn equal to:

λα
M(y,b1)
n,b1

+ (1− λ)

∑
b∈{1,...,B}\{b1} α

M(y,b)
n,b

K − 1
(5.2)

where λ ∈ [0, 1] is a user defined constant and K is the total number of classes.

It is stated in the book (Vovk et al. (2005)) that formula (5.2) is computed for all y ∈ Y .
However, in doing so the nonconformity scores αM(y,b)

n,b for different y ∈ Y overlap (in fact they
are mostly the same). Indeed, take two different classes y1, y2 from Y with indices b1, b2 ∈
{1, .., B} respectively. For class y1 the nonconformity scores needed to compute for Eq. (5.2)
are αM(y,b1)

n,b1
and αM(y,b)

n,b b ∈ {1, ..., B} \ {b1}. Similarly, for class y2 the nonconformity scores

needed to be computed are αM(y,b2)
n,b2

and αM(y,b)
n,b b ∈ {1, ..., B} \ {b2}. Since | {{1, ..., B} \

{b1}} ∩ {{1, ..., B} \ {b2}} | is equal to B − 2; B − 2 nonconformity scores are the same.
The nonconformity score αM(y,b1)

n,b1
corresponds to the binary problem that discriminates the

class y against all other classes; while each of the binary nonconformity scores αM(y,b2)
n,b2

corres-
ponds to a binary problem that discriminates the class y together with K − 2 other classes against
the class with index b2. The importance of these nonconformity scores is different for the labeled
query instance (xN+1, y). That is why, the aggregated nonconformity score αn for this instance is
λ-balanced.

If the aggregated nonconformity function for the one-against-all class decomposition scheme
is employed in the conformal prediction algorithm from Algorithm 4, then we receive conformal
classification for the one-against-all class decomposition scheme. The time complexity of the al-
gorithm in this case is derived as follows. According to formula (5.2) to compute any aggregated
nonconformity score αn we need K number of calls of the binary nonconformity function A in
line 5 of Algorithm 4. If this a general nonconformity function, then by Definition 20 to compute
any αn we need K of runs of the training algorithm of the binary classifiers fb. The conformal
prediction algorithm does this computation for all the instances in D′ and all the classes y ∈ Y .
Thus, the time complexity of the algorithm is O(K2NT), where T is the time complexity of the
training algorithm of the binary classifiers fb.

Shi et al. (2013) attempted to reduce the time complexity of the conformal prediction algorithm
for the one-against-all class decomposition scheme. They proposed to employ a more computa-
tionally efficient but less accurate conformal prediction algorithm, namely the inductive conformal
prediction algorithm (Papadopoulos, 2008). The inductive conformal prediction algorithm splits
the data into training and calibration sets. A classifier is trained on the training set while the non-

3The superscript M(y, b) in the nonconformity-score notation shows that class y is hypothesized for the
query instance xN+1 given the coding matrix M .

5.3. Conformal Class Decomposition Machines 71

conformity values are computed only for the instances from the calibration set using that classifier.
Hence, the computational complexity is reduced with a price of an information loss when the p-
values are being computed.

Analysing the approaches proposed in (Vovk et al., 2005) and (Shi et al., 2013), we observe that
they are applicable for the one-against-all class decomposition scheme only due to the aggregated
nonconformity function defined in (5.2). The approach in (Shi et al., 2013) is more computationally
efficient than that from (Vovk et al., 2005), however, it is less accurate. In the next two subsections
we show that the computational efficiency can be achieved without information loss. We introduce
two solutions that overcome the aforementioned problems and comply with the main objectives
stated in Section 5.1.

5.3.2 Mean-based Conformal Class Decomposition Machines

Consider the general case when we have a class decomposition scheme SP (Y) given with a coding
matrixM . We define a new aggregated nonconformity function that for any instance (xn, yn) ∈ D′

outputs:

1

B

B∑
b=1

α
M(y,b)
n,b . (5.3)

Equation Eq. (5.3) is similar to the equation Eq. (5.2) in terms of aggregating the nonconform-
ity scores obtained from the binary classification problems. However, we propose to compute the
nonconformity scores first for all classes in the class set. We then pool the resulting nonconformity
scores. Having done that, when computing Eq. (5.3) for each class, we retrieve the related non-
conformity scores from the pool. This trick enables us to avoid recomputing of the nonconformity
scores unlike the case in Eq. (5.2).

The function outputs the average (mean) of the binary nonconformity scores αM(y,b)
n,b related

to the binary classifiers (analogously to the function defined in (5.2)). It can be weighted if any
specific knowledge related to the class decomposition scheme used is available. The function is
general: it can be applied for any coding matrix; i.e. any class decomposition scheme.

Given the new aggregated nonconformity function defined, we introduce the mean-based con-
formal class decomposition machines (MCCD machines). The MCCD machines are multiclass
conformal classifiers that are able to employ any class decomposition schemes through the new
nonconformity function. The key feature of the MCCD machines is that they compute all the binary
nonconformity scores first and then proceed with the aggregated nonconformity scores following
the class code words in the coding matrix M employed. In this way recomputing of the binary
nonconformity scores is avoided which is the main reason for the complexity issues of the approach
proposed by (Vovk et al., 2005) (described in the previous subsection).

The MCCD machines are given in Algorithm 5. The input of the MCCD machines consists of
a significance level ε ∈ [0, 1], a training data D, a nonconformity function A for scoring binary
classifiers fb, a coding matrix M ∈ {0, 1}K×B , and a query instance xN+1 ∈ X . The output
consists of a class region Γε(D,xN+1) ⊆ Y for xN+1. From step 1 to step 9 the MCCD machines
compute the binary nonconformity score αybn,b for any binary problem b ∈ {1, ..., B}, binary class

72 Chapter 5. Conformal ECOC Machines

Algorithm 5 MCCD Machine
Input: Significance level ε,

Training data D,
Query instance xN+1,
Nonconformity function A for scoring binary classifiers fb,
Coding matrix M ∈ {0, 1}K×B .

Output: Class region Γε(D,xN+1)

1: for each binary problem b ∈ {1, ..., B} do
2: Set Db equal to {(x1,M(y1, b)), ..., (xn,M(yn, b))}.
3: for yb ∈ Yb do
4: Set D′b equal to Db ∪ {(xN+1, yb)}.
5: for n := 1 to N + 1 do
6: Set binary nonconformity score αybn,b equal to

A(D′b\{(xn,M(yn, b))}, (xn,M(yn, b))).
7: end for
8: end for
9: end for

10: Set class region Γε(D,xN+1) equal to ∅.
11: for each class y ∈ Y do
12: Set D′ equal to D ∪ {(xN+1, y)}.
13: for n := 1 to N + 1 do
14: Set aggregated nonconformity score αn equal to 1

B

∑B
b=1 α

M(y,b)
n,b .

15: end for
16: Set p-value py equal to #{n=1,...,N+1|αn≥αN+1}

N+1 .
17: Include class y in Γε(D,xN+1) if py > ε.
18: end for
19: Output class region Γε(D,xN+1).

yb ∈ Yb, and instance (xn, yn) ∈ D′. From step 10 to step 19 the MCCD machines compute
for any class y ∈ Y the aggregated nonconformity scores αn for all the instances (xn, yn) ∈ D′,
and then calculate the p-value py of y when assigned to the query instance xN+1. The class y is
included in the class region Γε(D,xN+1) of the query instance xN+1 if py is greater than the given
significance level ε.

Assume that the binary nonconformity scores are computed using the general nonconformity
function. Then, the time complexity of steps 1 ÷ 9 equals O(BNT) and the time complexity
of steps 10 ÷ 19 equals O(BNK). Thus, the time complexity of the MCCD machines equals
O(BNT + BNK). The space complexity is O(BN), since B2N binary nonconformity scores
have to stored.

If the MCCD machines are applied for the one-against-all class decomposition scheme, then the
time complexity will be O(KNT + K2N). This means that the MCCD machines are more com-
putationally efficient than the approach proposed by (Vovk et al., 2005) for that scheme. However,

5.3. Conformal Class Decomposition Machines 73

the MCCD machines require more space which is constant for the latter approach.

5.3.3 Poisson Conformal Class Decomposition Machines

As it is stated in Chapter 2 class decomposition schemes correct errors for discrete binary classifiers
and for scoring binary classifiers differently. In this subsection we show how the error-correcting
mechanism applicable for discrete binary classifiers can be adjusted for scoring binary classifiers.
This is realized by a new aggregated nonconformity function based on the Poisson binomial distri-
bution (Hong, 2013; Fernandez and Williams, 2010). The function is used in a new type of multi
class conformal classifiers called Poisson conformal class decomposition machines (PCCD). Below
we first introduce the new function and then the PCCD machines.

Assume that we have a class decomposition scheme SP (Y) given with a coding matrixM and
B probabilistic binary classifiers fb. Given an instance (xn, yn) ∈ D′, each binary classifier fb is
first trained on D′b \ {(xn,M(yn, b))} and then outputs an estimated posterior probability p̂(1|xn)

that xn belongs to the positive super class Y +
b

4. If class y ∈ Y is hypothesized for the query
instance xN+1 and the general nonconformity function is employed (see Definition 20), then the
binary nonconformity score αM(y,b)

n,b for instance (xn,M(yn, b)) equals:

|M(y, b)− p̂(1|xn)|. (5.4)

The binary nonconformity scores αM(y,b)
n,b of an instance (xn, yn) ∈ D′ for all b ∈ {1, . . . , B}

are estimates of the posterior probabilities of being opposite super class; i.e. they are estimations
of the error probabilities. Since we aim at discreting error correcting, we are interested in prob-
ability p(E > CN | αM(y,1)

n,1 , . . . , α
M(y,B)
n,B) that number E of binary classifiers fb that err

for xn is greater than the correction number CN of the class decomposition scheme SP (Y),
given error probability estimates αM(y,b)

n,b for b ∈ {1, . . . , B}. The probability p(E > CN |
α
M(y,1)
n,1 , . . . , α

M(y,B)
n,B) is equal to the following sum of probabilities:

B∑
e=CN+1

p(E = e | αM(y,1)
n,1 , . . . , α

M(y,B)
n,B). (5.5)

If we assume (naively) that the estimated error probabilities αybn,b are independent, it follows

that the probability of p(E = e | αM(y,1)
n,1 , . . . , α

M(y,B)
n,B) follows a Poisson binomial distribu-

tion5. This means that the probability p(E > CN | αM(y,1)
n,1 , . . . , α

M(y,B)
n,B) equals one minus

the Poisson cumulative distribution function. It grows the more the instance (xn, yn) is noncon-
form with the instances in D′ \ {(xn, yn)} over the B binary classification problems defined by
the class decomposition scheme employed. Thus, we propose to use the probability p(E > CN |
α
M(y,1)
n,1 , . . . , α

M(y,B)
n,B) as an aggregated nonconformity score for any instance (xn, yn) ∈ D′.

4We note that label “1” denotes the positive super class Y +
b .

5The Poisson binomial distribution is the distribution of the sum of independent and non-identically distrib-
uted Bernoulli trials (Hong, 2013; Fernandez and Williams, 2010).

74 Chapter 5. Conformal ECOC Machines

To compute the probability p(E > CN | αM(y,1)
n,1 , . . . , α

M(y,B)
n,B) we need to compute prob-

abilities p(E = e | αM(y,1)
n,1 , . . . , α

M(y,B)
n,B) (see equation (5.5)). The Poisson probability mass

function f(e;α
M(y,1)
n,1 , . . . , α

M(y,B)
n,B) equals:

∑
S∈Fe

∏
b∈S

α
M(y,b)
n,b

∏
b∈Sc

(1− αM(y,b)
n,b), (5.6)

where Fe is the set of all subsets of e integers that can be selected from {1, . . . , B} and Sc is the
complement of the set S to {1, . . . , B}.

Computing the probability mass function f(e;α
M(y,1)
n,1 , . . . , α

M(y,B)
n,B) is impractical, since the

size of Fe, i.e. the number of all possible subsets to be explicitly considered, is equal to B!/(e! ×
(B − e)!). Fortunately, there exists a recursive definition of the function given below:

f(e;α
M(y,1)
n,1 , . . . , α

M(y,B)
n,B) = (1− αyBn,B)f(e;α

M(y,1)
n,1 , . . . , α

M(y,B−1)
n,B−1) +

αyBn,Bf(e− 1;α
M(y,1)
n,1 , . . . , α

M(y,B−1)
n,B−1) (5.7)

under the assumption that f(0; ∅) equals 1.

The left term and right term of equation (5.7) define recursive computations that intersect. That
is why, we implemented equation (5.7) by storing all intermediate solutions
(such as f(e;α

M(y,1)
n,1 , . . . , α

M(y,B−1)
n,B−1) and f(e − 1;α

M(y,1)
n,1 , . . . , α

M(y,B−1)
n,B−1)). In this way we

avoided re-computations which resulted in efficient implementation of the probability mass function
f(e;α

M(y,1)
n,1 , . . . , α

M(y,B)
n,B).

To compute the probability p(E > CN | αM(y,1)
n,1 , . . . , α

M(y,B)
n,B) according to equation (5.5)

all the solutions f(e;α
M(y,1)
n,1 , . . . , α

M(y,B)
n,B) for e from CN + 1 to B have to be summed. Again,

the recursive computations can intersect and that is why all intermediate solutions are stored to avoid
re-computations. In this way computing the probability p(E > CN | αM(y,1)

n,1 , . . . , α
M(y,B)
n,B) has

a time complexity of O(B2) at the worst case.

The final implementation of our Poisson aggregated nonconformity function follows the imple-
mentation described above. It outputs for any instance (xn, yn) ∈ D′ a nonconformity score equal
to the probability p(E > CN | αM(y,1)

n,1 , . . . , α
M(y,B)
n,B) and its time complexity is O(B2).

Given the Poisson aggregated nonconformity function defined, we introduce the Poisson con-
formal class decomposition machines (PCCD machines). The PCCD machines are multi class
conformal classifiers that are able to employ any class decomposition schemes (through the new
nonconformity function) and any type of probabilistic binary classifiers.

5.3. Conformal Class Decomposition Machines 75

Algorithm 6 PCCD Machine

Input: Significance level ε,
Training data D,
Query instance xN+1,
Nonconformity function A for probabilistic binary classifiers fb,
Coding matrix M ∈ {0, 1}K×B .

Output: Class region Γε(D,xN+1)

1: for each binary problem b ∈ {1, . . . , B} do
2: Set Db equal to {(x1,M(y1, b)), . . . , (xn,M(yn, b))}.
3: for yb ∈ Yb do
4: Set D′b equal to Db ∪ {(xN+1, yb)}.
5: for n := 1 to N + 1 do
6: Train a binary classifier fb on D′b \ {(xn,M(yn, b))}.
7: Set binary nonconformity score αybn,b equal to |M(yn, b)− Pr(1 | xn) |.
8: end for
9: end for

10: end for
11: Set class region Γε(D,xN+1) equal to ∅.
12: for each class y ∈ Y do
13: Set D′ equal to D ∪ {(xN+1, y)}.
14: for n := 1 to N + 1 do
15: Set aggregated nonconformity score αn equal to

p(E > CN | αM(y,1)
n,1 , . . . , α

M(y,B)
n,B).

16: end for
17: Set p-value py equal to #{n=1,...,N+1|αn≥αN+1}

N+1 .
18: Include class y in Γε(D,xN+1) if py > ε.
19: end for
20: Output class region Γε(D,xN+1).

The PCCD machines are given in Algorithm 6. The input of the PCCD machines consists of
a significance level ε ∈ [0, 1], a training data D, a nonconformity function A for probabilistic
binary classifiers fb, a coding matrix M ∈ {0, 1}K×B , and a query instance xN+1 ∈ X . The
output consists of a class region Γε(D,xN+1) ⊆ Y for xN+1. From step 1 to step 10 the PCCD
machines compute the binary nonconformity score αybn,b (according to Eq. (5.4)) for any binary
problem b ∈ {1, . . . , B}, binary class yb ∈ Yb, and instance (xn, yn) ∈ D′. From step 11 to step
20 the PCCD machines compute for any class y ∈ Y the Poisson aggregated nonconformity scores
αn for all the instances (xn, yn) ∈ D′, and then calculate the p-value py of y when assigned to the
query instance xN+1. The class y is included in the class region Γε(D,xN+1) of the query instance

76 Chapter 5. Conformal ECOC Machines

xN+1 if py is greater than the given significance level ε.

The complexity analysis of the PCCD machines is similar to that of the MCCD machines. The
time complexity of steps 1÷ 10 equals O(BNT) and the time complexity of steps 11÷ 20 equals
O(B2NK). The first complexity coincides with that of the PCCD machines while the second one
is different and requires an explanation. In steps 11 ÷ 20 for all the K classes and all the N + 1

instances we compute the Poisson aggregated nonconformity value. This computation (step 15) has
a complexity O(B2). This means the time complexity of steps 11÷ 20 is indeed O(B2NK), and,
thus, the time complexity of the MCCD machines is O(BNT + B2NK). The space complexity
is O(BN), since B2N binary nonconformity scores have to stored.

If the PCCD machines are applied for the one-against-all class decomposition scheme, then the
time complexity will be O(KNT + K3N). This means that the PCCD machines are more com-
putationally efficient than the approach proposed by (Vovk et al., 2005) only if the time complexity
T to train binary classifiers is higher that the time complexity to sum K2 numbers. In addition, the
PCCD machines require more space which is constant for the latter approach.

5.4 Experiments

This section provides experiments. It first introduces the evaluation metrics for validity and effi-
ciency of conformal classifiers. Then, it provides experimental setup, and, finally, experimental
results and discussion.

5.4.1 Evaluation Metrics

Given a significance level ε, a conformal classifier is said to be valid if the class regions include
the true class of the query instances with the probability of at least 1 − ε (Vovk et al., 2005). To
establish validity we employ error rate e for class regions. It is defined as the proportion of the class
regions that do not contain the correct classes. In this context, a conformal classifier is valid if for
any ε ∈ [0, 1] we have that e ≤ ε. On error-significance graphs the validity can be established if the
error curves are mostly under the diagonal line y = x .

Given a significance level ε, a conformal classifier is said to be efficient if the class regions it
outputs are nonempty and as small as possible (Vovk et al., 2005). To establish efficiency we employ
three metrics: the percentage pe of empty-class regions Se, the percentage ps of single-class regions
Ss, and the percentage pm of multiclass regions Sm. All the regions have an associated error. The
percentage pe of empty-class regions is the error rate of Se, since the true classes are not simply
in empty-class regions. The error rate es on the set Ss is defined as the proportion of the invalid
single-class regions in Ss. The error rate em on the set Sm is defined as the proportion of the invalid
multiple-class regions in Sm. We note that these error components form the error e of a conformal
algorithm; i.e. e = pe + pses + pmem.

5.4. Experiments 77

Table 5.1: The UCI datasets used in the experiments.

Dataset # Instance # Attribute # Class
Iris 150 4 3

Vehicle 846 18 4
Dermatology 366 34 6

Glass 214 9 7
Zoo 101 16 7

Mfeat 2000 6 10

Significance Level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MCCD

Error
Empty
Multi
Single

Significance Level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PCCD

Error
Empty
Multi
Single

Significance Level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conformal Nearest Neighbor

Error
Empty
Multi
Single

Figure 5.1: Iris

5.4.2 Experimental Setup

The experiments were performed with the MCCD machines, the PCCD machines, and the con-
formal nearest neighbor classifier (Proedrou et al., 2002). The latter is a standard conformal clas-
sifier and was used as a baseline classifier. The nonconformity scores for the three classifiers were
computed using an internal 10-fold cross-validation process (instead of the original leave-one pro-
cess to reduce computational complexity). The nonconformity function for the MCCD machines
and PCCD machines was the general nonconformity function implemented over logistic regression
classifiers with ridge parameter r set equal to 1.0. The nonconformity function for the conformal
nearest neighbor classifier was the nearest neighbor function proposed in (Proedrou et al., 2002).
The parameter k for nearest neighbors was set equal to 3.

The experiments with the three classifiers were performed on 6 datasets from UCI data repos-
itory (Bache and Lichman, 2013) summarized in Table 5.1. The method of evaluation was 10-fold
cross validation.

78 Chapter 5. Conformal ECOC Machines

Significance Level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MCCD

Error
Empty
Multi
Single

Significance Level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PCCD

Error
Empty
Multi
Single

Significance Level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conformal Nearest Neighbor

Error
Empty
Multi
Single

Figure 5.2: Vehicle

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

MCCD

Error
Empty
Multi
Single

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

PCCD

Error
Empty
Multi
Single

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

Conformal Nearest Neighbor

Error
Empty
Multi
Single

Figure 5.3: Dermatology

5.4. Experiments 79

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

MCCD

Error
Empty
Multi
Single

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

PCCD

Error
Empty
Multi
Single

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

Conformal Nearest Neighbor

Error
Empty
Multi
Single

Figure 5.4: Glass

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

MCCD

Error
Empty
Multi
Single

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

PCCD

Error
Empty
Multi
Single

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

Conformal Nearest Neighbor

Error
Empty
Multi
Single

Figure 5.5: Zoo

80 Chapter 5. Conformal ECOC Machines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

MCCD

Error
Empty
Multi
Single

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

PCCD

Error
Empty
Multi
Single

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance Level

Conformal Nearest Neighbor

Error
Empty
Multi
Single

Figure 5.6: Mfeat

Table 5.2: The error rates of MCCD, PCCD and CNN

Data
MCCD

ε = 0 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 ε = 1PCCD
CNN

Iris
MCCD 0 0.08 0.24 0.32 0.38 0.52 0.6 0.69 0.8 0.85 1
PCCD 0 0.086 0.23 0.32 0.39 0.51 0.6 0.69 0.8 0.85 1
CNN 0 0.116 0.18 0.29 0.36 0.48 0.59 0.71 0.78 0.89 0.98

Vehicle
MCCD 0 0.1 0.2 0.29 0.4 0.5 0.61 0.69 0.78 0.9 1
PCCD 0 0.09 0.19 0.3 0.4 0.5 0.61 0.69 0.8 0.9 1
CNN 0 0.09 0.18 0.28 0.38 0.5 0.59 0.69 0.8 0.9 0.99

Derm
MCCD 0 0.07 0.19 0.25 0.33 0.44 0.55 0.68 0.75 0.75 1
PCCD 0 0.08 0.19 0.25 0.3 0.3 0.3 0.3 0.3 0.3 1
CNN 0 0.09 0.19 0.3 0.39 0.48 0.6 0.69 0.79 0.89 1

Glass
MCCD 0 0.09 0.18 0.25 0.38 0.51 0.64 0.71 0.79 0.9 1
PCCD 0 0.08 0.19 0.26 0.38 0.5 0.64 0.7 0.79 0.91 1
CNN 0 0.08 0.18 0.28 0.36 0.47 0.57 0.68 0.78 0.89 0.99

Zoo
MCCD 0 0.04 0.15 0.28 0.43 0.53 0.58 0.65 0.65 0.65 1
PCCD 0 0.04 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 1
CNN 0 0.11 0.18 0.28 0.4 0.45 0.6 0.72 0.77 0.87 0.97

Mfeat
MCCD 0 0.1 0.2 0.29 0.4 0.5 0.59 0.69 0.79 0.9 1
PCCD 0 0.09 0.19 0.29 0.4 0.5 0.6 0.69 0.79 0.9 1
CNN 0 0.09 0.19 0.29 0.4 0.49 0.59 0.7 0.8 0.9 1

5.4. Experiments 81

Table 5.3: The empty region rates of MCCD, PCCD and CNN

Data
MCCD

ε = 0 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 ε = 1PCCD
CNN

Iris
MCCD 0 0.05 0.2 0.3 0.37 0.51 0.6 0.68 0.8 0.85 1
PCCD 0 0.05 0.2 0.3 0.38 0.5 0.6 0.68 0.8 0.85 1
CNN 0 0.1 0.18 0.29 0.36 0.48 0.59 0.71 0.78 0.89 0.98

Vehicle
MCCD 0 0 0.02 0.16 0.34 0.47 0.6 0.69 0.78 0.9 1
PCCD 0 0 0.02 0.16 0.34 0.47 0.6 0.69 0.8 0.9 1
CNN 0 0 0 0.06 0.21 0.41 0.55 0.67 0.79 0.9 0.99

Derm
MCCD 0 0.06 0.18 0.24 0.32 0.44 0.55 0.68 0.75 0.75 1
PCCD 0 0.07 0.18 0.25 0.3 0.3 0.3 0.3 0.3 0.3 1
CNN 0 0.07 0.18 0.29 0.38 0.48 0.6 0.69 0.79 0.89 1

Glass
MCCD 0 0 0 0 0.07 0.28 0.48 0.59 0.73 0.89 1
PCCD 0 0 0 0.01 0.08 0.28 0.48 0.58 0.72 0.9 1
CNN 0 0 0 0.03 0.23 0.41 0.53 0.67 0.78 0.89 0.99

Zoo
MCCD 0 0.04 0.13 0.28 0.43 0.53 0.58 0.65 0.65 0.65 1
PCCD 0 0.04 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 1
CNN 0 0.09 0.18 0.28 0.4 0.45 0.6 0.72 0.77 0.87 0.97

Mfeat
MCCD 0 0 0 0.03 0.25 0.43 0.57 0.68 0.79 0.9 1
PCCD 0 0 0 0.02 0.24 0.43 0.57 0.68 0.79 0.9 1
CNN 0 0 0 0.03 0.21 0.38 0.55 0.69 0.8 0.9 1

Table 5.4: The multi region rates of MCCD, PCCD and CNN

Data
MCCD

ε = 0 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 ε = 1PCCD
CNN

Iris
MCCD 1 0 0 0 0 0 0 0 0 0 0
PCCD 1 0 0 0 0 0 0 0 0 0 0
CNN 1 0 0 0 0 0 0 0 0 0 0

Vehicle
MCCD 0 0 0.02 0.16 0.34 0.47 0.6 0.69 0.78 0.9 1
PCCD 1 0.25 0.04 0 0 0 0 0 0 0 0
CNN 1 0.49 0.22 0.01 0 0 0 0 0 0 0

Derm
MCCD 1 0 0 0 0 0 0 0 0 0 0
PCCD 1 0 0 0 0 0 0 0 0 0 0
CNN 1 0 0 0 0 0 0 0 0 0 0

Glass
MCCD 1 0.83 0.55 0.3 0.06 0 0 0 0 0 0
PCCD 1 0.8 0.55 0.29 0.07 0 0 0 0 0 0
CNN 1 0.51 0.28 0.03 0 0 0 0 0 0 0

Zoo
MCCD 1 0.04 0 0 0 0 0 0 0 0 0
PCCD 1 0.24 0 0 0 0 0 0 0 0 0
CNN 1 0 0 0 0 0 0 0 0 0 0

Mfeat
MCCD 1 0.84 0.56 0.3 0.06 0.01 0 0 0 0 0
PCCD 1 0.67 0.46 0.27 0.05 0.01 0 0 0 0 0
CNN 1 0.45 0.25 0.04 0 0 0 0 0 0 0

82 Chapter 5. Conformal ECOC Machines

Table 5.5: The single region rates of MCCD, PCCD and CNN

Data
MCCD

ε = 0 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 ε = 1PCCD
CNN

Iris
MCCD 0 0.94 0.79 0.69 0.62 0.48 0.4 0.31 0.2 0.14 0
PCCD 0 0.94 0.8 0.69 0.62 0.49 0.4 0.31 0.2 0.14 0
CNN 0 0.89 0.81 0.7 0.63 0.51 0.4 0.28 0.21 0.1 0,02

Vehicle
MCCD 0 0.74 0.93 0.83 0.65 0.52 0.39 0.3 0.21 0.09 0
PCCD 0 0.73 0.93 0.83 0.65 0.52 0.39 0.3 0.19 0.09 0
CNN 0 0.5 0.76 0.92 0.78 0.58 0.44 0.32 0.2 0.09 0

Derm
MCCD 0 0.93 0.81 0.75 0.67 0.55 0.44 0.31 0.24 0.24 0
PCCD 0 0.92 0.81 0.74 0.69 0.69 0.69 0.69 0.69 0.69 0
CNN 0 0.92 0.81 0.7 0.61 0.51 0.39 0.3 0.2 0.18 0

Glass
MCCD 0 0.16 0.44 0.68 0.85 0.71 0.51 0.4 0.26 0.1 0
PCCD 0 0.19 0.44 0.69 0.84 0.71 0.51 0.41 0.27 0.09 0
CNN 0 0.48 0.7 0.92 0.76 0.58 0.46 0.32 0.21 0.1 0

Zoo
MCCD 0 0.91 0.86 0.71 0.56 0.46 0.41 0.34 0.34 0.34 0
PCCD 0 0.71 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0
CNN 0 0.9 0.81 0.71 0.59 0.54 0.39 0.27 0.22 0.12 0.02

Mfeat
MCCD 0 0.15 0.43 0.65 0.68 0.54 0.42 0.31 0.2 0.09 0
PCCD 0 0.32 0.52 0.7 0.7 0.55 0.42 0.31 0.2 0.09 0
CNN 0 0.54 0.73 0.91 0.78 0.61 0.44 0.3 0.19 0.09 0

5.4.3 Results and Discussion

Figures 5.1 - 5.6 and Tables 5.2 - 5.4 show the experimental results. Analyzing the estimated error
curves, we observe that they are mostly under the diagonal line; i.e. for any ε ∈ [0, 1] we have that
e ≤ ε. This implies that the MCCD and PCCD machines are valid classifiers (on the experimental
datasets together with the CNN classifier).

Analyzing the efficiency of the classifiers, we observed that:

(1) the empty-class region curves of the MCCD and PCCD machines are more shifted to the
right compared with those of the CNN classifier; and

(2) the single-class region curves of the MCCD and PCCD classifiers are more shifted to the left
compared with those of the CNN classifier.

Observations (1) and (2) imply that the MCCD and PCCD machines have smaller empty class
regions and bigger single class regions compared with those of the CNN classifier for smaller sig-
nificance levels. The only exception we found for the Mfeat data. Thus, we may conclude that the
MCCD machines and PCCD machines are more efficient then the CNN classifier on the experi-
mental datasets.

Comparing the MCCD machines and PCCD machines, we see that they have similar results.
However, their performance on the Dermatology dataset and the Zoo dataset is rather different
(see Figure 5.3 and Figure 5.5). The figures show that the PCCD machines (in contract with the
MCCD machines) managed to convert a large percentage of empty class regions into single class
regions that contain correct classes. This resulted in a significant decrease of the error e and a
better efficiency. To explain this result we note that the average error correlation of the binary
classifiers (within the PCCD machines) for the Dermatology dataset and the Zoo dataset is negative
(see Figure 5.7). The negative average error correlation increases the average difference between
any two binary nonconformity scores αM(y,b1)

n,b1
and αM(y,b2)

n,b2
for b1, b2 ∈ {1, ..., B}. This shifts

5.5. Conclusion 83

the Poison distribution determined by the binary nonconformity scores αM(y,1)
n,1 , ..., α

M(y,B)
n,B to the

left; i.e. the distribution becomes more positively skewed. The latter decreases the probabilities
p(E > CN | αM(y,1)

n,1 , ..., α
M(y,B)
n,B); i.e. the aggregated nonconformity scores for the true classes.

This implies that the true classes receive higher p-values compared with those of other classes
which results in a significant decrease of the error e and a significant increase of the percentage ps

of single-class regions.

Iris Vehicle Derm Glass Zoo Pendigit
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Datasets

C
or

r
co

ef
f.

Figure 5.7: Averaged error correlation of the binary classifiers.

5.5 Conclusion

This chapter introduced the MCCD machines and PCCD machines as new class decomposition
implementations of the conformal framework. The MCCD machines and PCCD machines employ
aggregating nonconformity functions that do not depend on the type of the class decomposition
scheme employed. Thus, they can be applied for any class decomposition schemes and can be
viewed as generalizations of the conformal implementations for the One-Against-All scheme pro-
posed in (Vovk et al., 2005).

We showed that the MCCD machines and PCCD machines employ a very different approach
when computing the aggregated nonconformity scores. They first compute all possible binary non-
conformity scores and then for any new instance and any class they compute the aggregated noncon-
formity score using pre-computed binary nonconformity scores. This contrasts with the conformal
implementations for the One-Against-All scheme that always re-compute all the binary noncon-
formity scores whenever a new aggregated nonconformity score is required. Thus, the MCCD ma-
chines and PCCD machines are more computationally efficient than the conformal implementations
for the One-Against-All scheme.

The MCCD machines and PCCD machines differ in the way that they correct errors. Both ma-
chines employ loss-based error-correcting mechanisms through their aggregating nonconformity

84 Chapter 5. Conformal ECOC Machines

functions. However, the mechanism of the PCCD machines is related to the error-correcting mech-
anism applicable for discrete binary classifiers. Its nonconformity function outputs an estimate of
the probability that more thanCN binary classifiers will err. It was demonstrated that, when the av-
erage error correlation between the binary classifiers is negative, this function allows for generating
class regions with low error and high efficiency.

The experiments showed that the MCCD machines and PCCD machines are valid and effi-
cient classifiers in the context of reliable classification. For most of the datasets, their efficiency is
superior to that of the standard conformal classifier (CNN).

6
The Bunching.HDA Algorithm for

Heterogeneous Domain Adaptation

This chapter addresses the research question of how to apply class decomposition schemes for
heterogeneous domain adaptation. Assume that we have data from a domain of interest that we call
target domain and data from an auxiliary domain that we call source domain under condition that
the feature spaces of both domains are different. The classification problem, we have, is to provide
a good estimate of the true class of a query instance from the target domain using a classification
model that employs the source data in addition to the target data.

This chapter proposes the Bunching.HDA algorithm as a class decomposition solution for the
considered classification problem when the target and source domains share the same output set of
class labels. In this case the code space associated with any class decomposition scheme is the same
for both domains and thus it can be considered as a common latent feature space where the target
and source data can be projected. The algorithm is based on this finding and operates as follows.
First, it builds the encoding functions (mappings) for the target data, source data, and class labels.
Then it employs these functions to project all the data and class labels in the common code space.
Once all the data and class labels are presented in the code space, two Bunching.HDA classification
rules can be applied: the decoding rule of the class decomposition schemes and the decoding rule
of the instance decomposition schemes.

The Bunching.HDA algorithm is an alternating minimization algorithm. Its main functions are
theoretically derived and justified. The algorithm is experimentally analyzed: a convergence ana-
lysis is provided together with experiments on three domain adaptation problems. The latter shows
that the Bunching.HDA algorithm is capable of outperforming some state-of-the-art heterogeneous
domain-adaptation methods.

The chapter consists of 6 sections. Section 6.1 introduces a background information on domain
adaptation. Related work is given in Section 6.2. Section 6.3 formalizes the classification problem
for domain adaptation. The Bunching.HDA algorithm is introduced in Section 6.4. Section 6.5
describes the experiments. The chapter is concluded in Section 6.6.

86 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

6.1 Background

To obtain an accurate classification model in a particular domain of interest, one needs to feed
the classification algorithm with a sufficient amount of labeled data (Wang and Mahadevan, 2011).
Obtaining such amount of data is often a time consuming and an expensive process (e.g. human
annotators are needed for labeling data) (Duan et al., 2012; Wu and Dietterich, 2004). However,
in many situations there exist similar domains that are abundant in labeled data. Then, a natural
question arises whether we can exploit the labeled data from these domains to derive better classi-
fication models compared with the models based on the initially given data. Attempts that seek for
an answer to this question resulted in a field of domain adaptation (DA) usually considered as a
branch of transfer learning (Pan and Yang, 2010).

There exist several DA methods, some of them have been successfully employed in various ap-
plication fields. Examples include applications in sentiment analysis (Blitzer et al., 2007), computer
vision (Duan et al., 2010), game playing (Banerjee and Stone, 2007), etc. Recently, DA methods
have been used to improve the classification accuracy of a newly developed image recognition sys-
tem by levering millions of annotated Instagram and Twitter photos (Gong et al., 2012).

In the DA field, the domain of interest is called target domain and the provided auxiliary do-
main is called source domain. So far, the DA research has mainly focused on the homogeneous
domain adaptation (hDA). In hDA the target and source domains share the same feature space (Wu
and Dietterich, 2004; Saenko et al., 2010; Hall, 2004). The observed difference between the do-
mains arises due to the difference between their data distributions (Pan and Yang, 2010; Wang and
Mahadevan, 2011). However, many real-world scenarios, like classifying images exploiting given
tagged text, or classifying PET scans using MR images, require more advanced approaches to adapt
domains with totally different feature spaces. This gives rise to a relatively new DA subfield called
heterogeneous domain adaptation (HDA) which is the main topic of this chapter.

6.2 Related Work

The approaches to HDA are divided into two groups (Weiss et al., 2016). The first group consists of
symmetric approaches. These approaches transform the target and source domains into a common
latent feature space. The target data and source data are first projected into the common space and
then the final prediction models are trained over the projected data. The second group consists
of asymmetric approaches. These approaches transform the source domain directly into the target
domain. That is, the source data is first projected into the target domain and then the final prediction
models are trained on the target data and the projected source data. Below we briefly describe the
main approaches from the two groups and specify the requirements for the HDA approach proposed
in this chapter.

We consider three approaches to symmetric heterogeneous domain adaptation. The first ap-
proach is Domain Adaptation Manifold Alignment (DAMA) (Wang and Mahadevan, 2011). DAMA
is applicable for problems when there are one target domain and P − 1 source domains that have
common in the same class-label set. Under the assumption that any domain can be viewed as a man-
ifold, it creates P transformation functions, one for each domain. This is realized by a manifold

6.2. Related Work 87

alignment algorithm. The algorithm maintains a combinatorial graph Laplacian matrix to reflect
inter-domain class similarity, a combinatorial graph Laplacian matrix to reflect inter-domain class
dissimilarity, and a diagonal matrix of graph Laplacian matrices each reflecting instance similarities
within a domain. The algorithm minimizes an objective function defined over the matrices so that
the resulting P transformation functions match same class instances and that separate different class
instances when projected into the common latent feature space. Consequently, the local topology
is preserved as much as possible. DAMA has its own prediction algorithm. It first trains regres-
sion models for the source data projected, and then adapts these models to the target domain using
manifold regularization based on the projected target data.

Heterogeneous Spectral Mapping (HeMAP) is a symmetric approach for problems with a target
domain and a source domain that do not share common class-label set (Shi et al., 2010). It employs
a spectral mapping algorithm to learn transformation functions. The defined objective function has
two components: the first one measures whether the topology of the target data and source data is
preserved while the second one measures the difference between the target data and source data. By
minimizing the objective function the algorithm learns target and source transformation functions
to preserve the topology of the target data and source data as well as to minimize their differences
in the common latent feature space. HeMAP has its own classification algorithm. The algorithm
employs the total-probability law to combine information from the source and target domains.

Heterogeneous Feature Augmentation (HFA) is a symmetric approach for problems with a tar-
get domain and a source domain that share common class-label set (Duan et al., 2012). As its name
suggests the common latent feature space is augmented by the target-domain features and source-
domain features. The transformation functions are jointly represented by a matrix. To find the joint
transformation matrix an optimization problem to minimize the structural risk functional of SVMs
is defined. The problem is tackled by an alternating optimization algorithm that simultaneously
solves the dual problem of SVMs and finds the corresponding optimal joint transformation matrix.
The final classifier for HFA is the SVM classifier derived together with the transformation matrix
(i.e. the transformation functions represented by the matrix are related to SVMs).

We consider two approaches to asymmetric heterogeneous domain adaptation. The first ap-
proach is Asymmetric Regularized Cross-Domain Transformation (ARC-t) (Kulis et al., 2011).
ARC-t is applicable for problems containing a target domain and a source domain that have in
common the same class-label set. The transformation function is represented by a matrix W that
maps an instance from the source domain to an instance in the target domain. The matrix W is
learned in a non-linear Gaussian RBF kernel space. This is done by minimizing a matrix regular-
izer and a set of constraints imposed on any pair of target instance and projected source instance
(for example using class information).

Sparse Heterogeneous Feature Representation (SFHR) is a asymmetric approach for problems
with a target domain and a source domain that share common class-label set (Duan et al., 2012).
The key idea is similar to that of the ARC-t approach. The difference is that the target data and
source data is first represented in a code space based on some class decomposition scheme and then
the transformation matrix W is being learned. This is done with nonnegative LASSO optimization.
The experiments showed that SFHR is sensitive to the type of the class decomposition scheme
employed. The best results are reported for the exhaustive ECOC scheme.

88 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

Table 6.1: HDA Approaches

HDA # Source Domain Class Topology Classifier Specific
Method Domains Assumption Correspondence Preservation Independence Classifiers
DAMA ≥ 1 yes yes yes yes yes
HeMAP 1 no no yes no yes
HFA 1 no yes no yes yes
ARC-t 1 no yes yes yes no
SFHR 1 no yes yes yes no

Below in Table 6.1 we summarize the HDA approaches considered so far. The approaches are
described in terms of:

• number of source domains that can be adapted;

• domain assumption;

• class correspondence used for learning transformation functions;

• data topology preservation after domain adaptation;

• classifier independence (in the sense that any classifier can be employed after domain adapt-
ation);

• specific classifiers that the approaches provide.

From Table 6.1 we may conclude that we need a HDA algorithm that can adapt several source
domains without imposing any assumptions. The algorithm has to employ class correspondence
to match better (projected) same-class instances and it has to preserve the data topology (at least
locally). The adapted datasets have to applicable for any classification model. Still, it is desirable
that the algorithm can provide a specific classifier tailored to the transformations employed.

In the rest of this chapter we introduce a HDA algorithm that accommodate the requirements
we described above. The algorithm follows the symmetric approach to heterogeneous domain ad-
aptation. It is based on class decomposition schemes which makes it unique in this field.

6.3 Problem Formulation

We consider the problem of domain adaptation in the context of the classification problem (see
Chapter 2). We define a classification domain as a triple that consists of an input space X with d
featuresX(j) (j ∈ {1, . . . , d}), a finite output set Y ofK class labels, and an unknown probability
distribution p over X × Y . We assume the presence of a target domain and at least one source
domain. The target domain is the domain of interest. It is given by a target input space XT with dT
features, an output set Y T of class labels, and a target probability distribution pT over XT × Y T .
The target training dataDT is a multi-set ofNT labeled instances (xTi , y

T
i) ∈ XT ×Y T generated

independently from pT . The source domain is an auxiliary domain. It is given analogously; i.e. by
a source input spaceXS with dS features, an output set Y S of class labels, and a source probability
distribution pS over XS × Y S . The source training data DS (as DT) is a multi-set of NS labeled
instances (xSi , y

S
i) ∈ XS × Y S generated independently from pS .

6.4. Bunching Algorithm for Heterogeneous Domain Adaptation 89

Given the target training data DT and the source training data DS (typically NT << NS), the
classification problem in domain adaptation is to provide a good estimate ŷ ∈ Y of the true class of
a target query instance xTq ∈ XT according to the probability distribution pT .

The difficulty of the classification problem in domain adaptation depends mainly on the rela-
tionship between the target and source input spaces XT and XS . If XT and XS are the same,
the domain adaptation is called homogeneous and is relatively simple, since the target data and
source data lie in the same feature space. If XT and XS are different, the domain adaptation is
called heterogeneous and is relatively difficult, since we need to find common feature space. This
space can be target input space (assymettric transformation), or a common latent space (symmetric
transformation).

In this chapter we consider a classification problem in the heterogeneous domain adaptation.
The problem is characterized as follows:

• the target input space XT is given by dT continuous features XT (j) for j ∈ {1, . . . , dT },
i.e. XT ⊆ RdT ;

• the source input space XS is given by dS continuous features XS(j) for j ∈ {1, . . . , dS},
i.e. XS ⊆ RdS ;

• the target and source input spaces XT and XS are different, i.e. XT 6= XS ;

• the target and source domains share the same output set Y of class labels, i.e. Y T = Y S =

Y ;

• the number K of class labels in Y is greater than 2, i.e. K > 2.

6.4 Bunching Algorithm for Heterogeneous Domain Adapt-
ation

In this section we introduce Bunching.HDA as an algorithm for the classification problem in hetero-
geneous domain adaptation specified in the previous section. The algorithm follows the symmetric
approach to the heterogeneous domain adaptation. It projects the target data and source data into a
common latent feature space using a class decomposition scheme. Given that the target and source
domains share the same output set Y of class labels, the common latent feature space is the code
space associated with the class decomposition scheme used. Therefore, the algorithm first builds the
encoding functions (mappings) for the target data, source data, and class labels. Then it employs
these functions to project all the data and class labels in the code space, i.e. the common latent
feature space.

The encoding functions are built using an optimization technique similar to that used in the
Bunching algorithm proposed in (Dekel and Singer, 2002) 1. An important feature of this technique
is that the optimization process employs the class labels projected in the code space (i.e. class code
words) in addition to the projected target and source instances. This allows two classification rules
to be implemented on the level of the code space: the decoding (classification) rule of the class

1This explains the name of the proposed algorithm.

90 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

decomposition schemes (see Chapter 2, Subsection 2.3.3) and the decoding (classification) rule of
the instance decomposition schemes (see Chapter 3, Subsection 3.2.2).

The Bunching.HDA algorithm is described in detail in subsection 6.4.1. The classification rules
associated with the algorithm are provided in subsection 6.4.2.

6.4.1 Description

Given a class decomposition scheme with B class partitions, the Bunching.HDA algorithm adapts
the target and source domains by projecting the target instances from XT ⊆ RdT , the source
instances from XS ⊆ RdS , and the class labels from Y into a code space C ⊆ [0, 1]B so that
the projected instances are grouped around the code words of their classes. The algorithm operates
under the assumption that the output set Y consists ofK standard unit vectors in RK (i.e. Y ⊆ RK)
so that the label of the k-th class (k ∈ {1, . . . ,K}) is given by a standard unit vector whose k-th
bit equals 1. In this case the projection process is realized using three composite mappings:

(1) σ ◦ TT : RdT → [0, 1]B from the target feature space XT to the code space C, and

(2) σ ◦ TS : RdS → [0, 1]B from the source feature space XS to the code space C, and

(3) σ ◦ C : RK → [0, 1]B from the output set Y of K class labels to the code space C,

where

- σ : RB → [0, 1]B is a multivariate logistic function defined as σb(w) = (1+e−w(b))−1, b ∈
{1, ..., B}, and

- TT : RdT → RB is a linear mapping given as a matrix in RB×dT , and

- TT : RdS → RB is a linear mapping given as a matrix in RB×dS , and

- C : RK → RB is a linear mapping given as a matrix in RB×K .

The main task of the Bunching.HDA algorithm is to learn the mappings (matrices) TT , TS , and
C using the target and source data. We note that the composite mappings σ ◦ TT and σ ◦ TS are
essentially encoding functions of the class decomposition scheme used for the target domain and
the source domain, respectively. More precisely, the rows of the target matrix TT represent logistic
regression models of the binary classifiers trained on the target data while the rows of the source
matrix TS represent logistic regression models of the binary classifiers trained on the source data.
The composite mapping σ ◦ C is a class encoding function: it determines the code word for each
class label and it is common for the target domain and the source domain. Due to the unit-vector
domain of the output set Y of class labels, the matrix C is the transposed coding matrix used; i.e.
any class is represented by a column in C. We note that in standard decomposition schemes (such
as One-vs-all, eECOC, mECOC) the matrix C stays fixed. Bunching.HDA, however, adjusts C to
better fit the target and source domains.

Once the mappings TT , TS , and C have been learned, any target instance xT ∈ XT is pro-
jected into σ(TTxT) ∈ C, any source instance xS ∈ XS is projected into σ(TSxS) ∈ C, and any
class label y ∈ Y is projected into σ(Cy) ∈ C. The projection scheme is provided in Figure 6.1.

6.4. Bunching Algorithm for Heterogeneous Domain Adaptation 91

Figure 6.1: Projection Scheme

We note that any element p of the code space C can be viewed as a parameter vector for a mul-
tivariate Bernoulli variable2. If p is a true parameter vector in C and q is an approximate parameter
vector in C, then to quantify the information gain from q to p we can use the KL divergence defined
as follows:

KL [p‖q] =

B∑
b=1

[
p(b) log

(
p(b)

q(b)

)
+ (1− p(b)) log

(
1− p(b)
1− q(b)

)]
. (6.1)

The Bunching.HDA algorithm aims at mapping instances and their corresponding labels to
similar locations in the code space C. This leads us to define a loss l for each instance label pair
(x, y) ∈ DT ∪DS . As our measure in C is the KL divergence, a loss l of the instance x for class
label y w.r.t. the mappings T and C can be readily defined as:

l(x, y | C, T) = KL [σ (Cy) ‖σ (Tx)] ,

where

T =

{
TT if (x, y) ∈ DT ,
TS if (x, y) ∈ DS .

The loss L for all NT target instances (xTi , y
T
i) ∈ DT is defined as:

L(DT | C, TT) =

NT∑
i=1

l(xTi , y
T
i | C, TT),

and the loss L for all NS source instances (xSi , y
S
i) ∈ DS is defined as:

L(DS | C, TS) =

NS∑
i=1

l(xSi , y
S
i | C, TS).

Minimizing L(DT | C, TT) with respect to TT and C forces the projected target instances
σ(TTxTi) to be close to the code words σ(CyTi) of their class labels yTi in the code space C. Like-

2If X is a multivariate Bernoulli variable, then the probability mass function is given by f(X =

(X(1), ..., X(B))′ , p) =
∏B
b=1 p(b)

X(b)(1− p(b))1−X(b) for (X(1), ..., X(B))′ ∈ {0, 1}B .

92 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

wise, minimizing L(DS | C, TS) with respect to TS and C forces the projected source instances
σ(TSxSi) to be close to the code words σ(CySi) of their class labels ySi in the code space C. Taken
together, we conclude that minimizing:

L(DT | C, TT) + L(DS | C, TS) (6.2)

causes the target and source instances from the same class to be projected to nearby points in the
code space C no matter which domain they belong to. For this reason we pay a particular attention
to the mapping (matrix) C.

The matrix C′ has to have large separation properties3. The large row separation property
means that for any class label y1 ∈ Y the code word Cy1 has to be well-separated (distant) from
the code Cy2 of any other class label y2 ∈ Y (see Section 2.3.4 in Chapter 2). If this property
holds, then the code words σ(Cy1) and σ(Cy2) are well-separated in the code space C in terms of
the KL-divergence; i.e. KL [σ (Cy1) ‖σ (Cy2)] and KL [σ (Cy2) ‖σ (Cy1)] are both large. Since
the projected instances arrive close to the code words of the their class labels, this causes that the
projected instances of different class labels to be well separated (distant) in the code space C.

The large row separation property means that for any b1 ∈ {1, . . . , B} the partition code
word C′(·, b1) has to be well-separated (distant) from the partition code word C′(·, b2) and its
complement for any other b2 ∈ {1, . . . , B} \ {b1} (see Section 2.3.4 in Chapter 2). If this property
holds, then the logistic regression models represented by columns C′(·, b1) and C′(·, b2) commit
less errors simultaneously. This causes the loss l(x, y | C, T) (defined through Equation (6.1))
for any labeled instance (x, y) to decrease which in turn decreases the total loss (6.2) for all the
projected target and source instances. The latter means that the projected instances are grouped
more around the code words of their classes in the code space C.

From the above we may conclude that it is desirable that (the transpose of) the matrix C has
large separation properties. To guarantee this we propose to initialize the matrix C using a coding
matrix Cref with known large separation properties (e.g. the eECOC coding matrix). Since the
matrix C is being learned, we have to make sure that it is close to the matrix Cref. For this purpose,
we add the following loss term to the objective function (6.2) to penalize theKL divergence between
the projections of the classes obtained by C and Cref for the target and the source instances:

L(DT | Cref, C) + L(DS | Cref, C), (6.3)

where

L(DT | Cref, C) =
∑

(xTi ,y
T
i)∈DT

KL
[
σ
(
CyTi

)
‖σ
(
Cref y

T
i

)]
, and

3We note that the matrix C is the transposed coding matrix.

6.4. Bunching Algorithm for Heterogeneous Domain Adaptation 93

L(DS | Cref, C) =
∑

(xSi ,y
S
i)∈DS

KL
[
σ
(
CySi

)
‖σ
(
Cref y

S
i

)]
.

The final objective function that we are to minimize with respect to TT , TS and C is defined
as follows:

O(DT , DS | TT , TS , C) =L(DT | C, TT) + L(DS | C, TS)

+ α (L(DT | Cref, C) + L(DS | Cref, C)) ,
(6.4)

where α > 0 is a regularization parameter that balances the mismatch between C and Cref.

Once the objective function (6.4) has been defined, we introduce the Bunching.HDA algorithm.
The algorithm learns the mappings (matrices) TT , TS , and C from the target and source data by
minimizing this function. It is given in Figure 7. The Bunching.HDA algorithm is of Alternating
Minimization (AM) type (Csiszar and Tusnady, 1984). It first improves the matrix TT w.r.t. the
matrixC, then improves the matrix TS w.r.t. the matrixC, and, finally, improves the matrixC w.r.t.
the matrices TT and TS . The process is repeated maxIterOut times to minimize the objective
function (6.4).

The IMPROVE−T function improves the mapping TT (resp. TS) w.r.t. C. This is done by
minimizing the loss term L(DT |C, TT) (resp. L(DS |C, TS)) of the objective function Eq. (6.4).
The IMPROVE−T function is a gradient descent algorithm with the backtracking line-search method
(Gradient derivation is given in Preposition 1, Appendix A). In each iteration it first computes the
gradient matrix G and then executes the backtracking method using a parameter β to determine a
step size η that sufficiently reduces the objective function Eq. (6.4) (see lines 7-9 in IMPROVE-T).
The function stops after the maxIterIn iteration and outputs the improved matrix TT (resp. TS).

The IMPROVE−C function improves the mapping C w.r.t. TT and TS . This is done by
minimizing the loss term (6.3) in the objective function Eq. (6.4). Minimizing is analytical, since
the objective function Eq. (6.4) has a unique stationary point for a fixed choice of TT and TS (see
Preposition 2, Appendix A).

We note that the objective function (6.4) can be extended to a classification problem for which:

• we have a target domain and no source domain, i.e. the classification problem is standard.
The Bunching.HDA algorithm in this case does not process source data and is modified
as follows: lines 4 in the Bunching.HDA algorithm and the function IMPROVE−C are
skipped and line 5 in the function IMPROVE−C is modified to reflect target data only.In
this way Bunching.HDA algorithm is similar to the Bunching algorithm proposed in (Dekel
and Singer, 2002). The difference primarily lies in the optimization technique that improves
the mapping TT .

• we have a target domain and several source domains, i.e. the classification problem is a
multi-domain adaptation problem. The Bunching.HDA algorithm in this case is modified as
follows: the IMPROVE−T function in the loop of the Bunching.HDA algorithm is called for
each source domain p to improve the mapping TSp and line 5 in the function IMPROVE−C
is modified to reflect the data from all the source domains.

94 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

Algorithm 7 The Bunching.HDA Algorithm
Bunching.HDA
Input: target data DT , source data DS , initial projection matrices TT0 and TS0 , reference projection matrix Cref, step para-
meter β ∈ (0, 1), regularization parameter α > 0, and iteration numbersmaxIterOut > 1 andmaxIterIn > 1.
Output: projection matrices TT , TS and C.
1: C0 := Cref;
2: for t := 1 tomaxIterOut do
3: TTt := IMPROVE-T(DT , Ct−1, T

T
t−1,maxIterIn);

4: TSt := IMPROVE-T(DS , Ct−1, T
S
t−1,maxIterIn);

5: Ct := IMPROVE-C(DT , DS , α, Cref, T
T
t−1, T

S
t−1);

6: end for
7: return TT , TS , and C

IMPROVE-T
Input: dataD, projection matrices C and T , and iteration numbermaxIterIn > 1.
Output: projection matrix T .
1: let B and d be the sizes of T ;
2: for t := 1 tomaxIterIn do
3: Set η equal to 1;
4: for i := 1 toB and j := 1 to d do

5: G(i, j)=
∑

(x,y)∈D

x(j)

(
σ
(
− C(i, ·)y

)
σ
(
T (i, ·)x

)
− σ

(
C(i, ·)y

)
σ
(
− T (i, ·)x

))
;

6: end for
7: while L(D|C, T − ηG) > L(D|C, T)− η

4 ‖G‖
2 do

η := βη;
8: end while
9: T := T − η ×G;

10: end for
11: return T.

IMPROVE-C
Input: target dataDT , source dataDS , regularization parameter α > 0, reference projection matrix Cref, and
projection matrices TT and TS .
Output: projection matrix C.
1: let B and K be the sizes of Cref;
2: for i := 1 toB and j := 1 toK
3: DTj :=

{(
xT , y

)
∈ DT | y = yj ∧ yj ∈ Y

}
;

4: DSj :=
{(
xS , y

)
∈ DS | y = yj ∧ yj ∈ Y

}
;

5: C(i, j) := 1
1+α

(
αCref +

∑
(xT ,y)∈DTj

T
T
x
T

+
∑

(xS,y)∈DSj

T
S
x
S

|DTj |+|DSj |

)
;

6: end for
7: return C.

6.4. Bunching Algorithm for Heterogeneous Domain Adaptation 95

6.4.2 Classification of Target Instances with Bunching.HDA

Once the Bunching.HDA algorithm has learned the mappings TT , TS , and C, any target instance
xT ∈ XT is projected into σ(TTxT) ∈ C, any source instance xS ∈ XS is projected into
σ(TSxS) ∈ C, and any class label y ∈ Y is projected into σ(Cy) ∈ C. We can use these three
types of projections to define the Bunching.HDA classification rules for target query instances. The
rules are described below in detail.

The first classification rule associated with the Bunching.HDA algorithm is the classification
rule of the class decomposition schemes. Given the code words σ(Cy) for class labels y ∈ Y and
a target query instance xTq ∈ XT , the instance is first projected into σ(TTxTq) in the code space
C (i.e. the instance is encoded). Then we compute set Ŷ of class labels y ∈ Y whose code words
σ(Cy) in C are closest to the projection σ(TTxTq) in terms of the KL divergence:

Ŷ = argmin
y∈Y

KL[σ(Cy) ‖ σ(TTxTq)]. (6.5)

If |Ŷ | > 1, the final class label estimate ŷ for the target query instance xTq is chosen ran-
domly from the classes in Ŷ (i.e. the instance is decoded). We note the presented classification
rule is a prototype-based classification rule (Mitchell, 1997). That is why, it is denoted by Bunch-
ing.HDA.Pr.

The second classification rule associated with the Bunching.HDA algorithm is the classification
rule of the instance decomposition schemes. Given the set DC of the projected target and source
instances4 and a target query instance xTq ∈ XT , the instance is first projected into σ(TTxTq) in
the code space C (i.e. the instance is encoded). Then the set NN of the nearest target and source
neighbors of σ(TTxTq) in DC is computed equal to:

argmin
x∈DC

KL[x ‖ σ(TTxTq)].

The set Ŷ of possible estimates of the true class label for xTq is computed as a set of class labels
with majority of the instances in NN . More precisely,

Ŷ = argmax
y∈Y

#{xi ∈ NN |yi = y}.

If |Ŷ | > 1, the final class label estimate ŷ for the target query instance xTq is chosen ran-
domly from the classes in Ŷ (i.e. the instance is decoded). We note the presented classification
rule is a nearest-neighbor classification rule (Mitchell, 1997). That is why, it is denoted by Bunch-
ing.HDA.NN.

In addition to the Bunching.HDA.Pr classification rule and the Bunching.HDA.NN classific-
ation rule, other classification rules are also possible. Once the target data and source data are
projected in the code space C we can train any classification model on the union of these data. This
suggests that Bunching.HDA is a classifier independent approach. We demonstrate this property in
the next Chapter using Random Forest classifiers and Naive Bayes classifiers trained in the code
space C.

4DC = {σ(TT xTi)|(xTi , yTi) ∈ DT } ∪ {σ(TSxSi)|(xSi , ySi) ∈ DS}.

96 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

6.5 Experiments

This section presents our experiments, results, and initial conclusions. The experiments are divided
into two groups. The first group of experiments, given in Subsection 6.5.1, were done to provide a
convergence analysis of the Bunching.HDA algorithm. The second group of experiments, given in
Subsection 6.5.1, were done to estimate the generalization performance of the algorithm on three
domain adaptation datasets. The estimated performance is compared with that of baseline classifiers
trained on the target data only and two domain adaptation approaches.

6.5.1 Convergence Analysis Experiments

For the convergence analysis we run two series of experiments. First, we investigated the con-
vergence properties of the function IMPROVE-T in Bunching.HDA. Second, we investigated the
convergence properties of the Bunching.HDA algorithm. Both series were run for values of the reg-
ularization parameter α from {0.04, 0.02, 1, 5, 25} and two coding matrices: the mECOC matrix
and the eECOC matrix. The matrices were chosen to represent two extreme cases in terms of the
column number (see Chapter 2, Section 2.4.2) and thus allowing convergence analysis for minimal
and maximal number of features for the code space C (i.e., the common space).

The experiments were performed on a domain adaptation problem that we created based on
the Segment dataset (Bache and Lichman, 2013). The Segment dataset has 19 features and 2310

instances grouped into 7 distinct classes. To create the target data and the source data, we first ran-
domly partitioned the set of features into two disjointed subsets with 10 and 9 features, respectively.
Then, we randomly selected 500 instances for the target data and the remaining 1810 instances for
the source data so that the seven Segment classes are present in each dataset.

To investigate the convergence properties of the function IMPROVE-T over the target data
we sequentially executed the function IMPROVE-T and function IMPROVE-C 10 times (lines 3
and 5 of the Bunching.HDA algorithm). The maxIterIn parameter in IMPROVE-T was set 10;
i.e. the gradient descent was iterated 10 times in each run of IMPROVE-T . We plotted the loss
L(DT | C, TT) associated with IMPROVE-T on the target data against the total number of the
iterations of IMPROVE-T . The loss was normalized by the column size of the coding matrices
used to make the results comparable for the mECOC and eECOC matrices.

To investigate the convergence properties of the function IMPROVE-T over the source data we
run an analogous experiment. The experimental settings were the same. The results are shown in
Figure 6.3.

Analyzing the results presented above we may reach the following conclusions for the functions
IMPROVE-T and function IMPROVE-C:

• both functions reduce the losses L(DT | C, TT) and L(DS | C, TS). The loss reduction is
larger for earlier iterations.

• the function IMPROVE-T converges rather quickly given a fixed matrix C. Hence, the
parameter maxIterIn can be set small.

• the function IMPROVE-T converges irrespective of the regularization parameter α.

6.5. Experiments 97

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Number of iterations

Lo
ss

alpha=0.04
alpha=0.2
alpha=1
alpha=5
alpha=25

(a) mECOC Matrix

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Number of iterations

Lo
ss

alpha=0.04
alpha=0.2
alpha=1
alpha=5
alpha=25

(b) eECOC Matrix

Figure 6.2: Loss associated with the functions IMPROVE-T and IMPROVE-C on the
target data. The blue segments of the lines indicate the reduction in the loss caused by
IMPROVE-T and the red segments indicate the reduction caused by IMPROVE-C.

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Number of iterations

Lo
ss

alpha=0.04
alpha=0.2
alpha=1
alpha=5
alpha=25

(a) mECOC Matrix

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Number of iterations

Lo
ss

alpha=0.04
alpha=0.2
alpha=1
alpha=5
alpha=25

(b) eECOC Matrix

Figure 6.3: Loss associated with the functions IMPROVE-T and IMPROVE-C on the
source data. The blue segments of the lines indicate the reduction in the loss caused by
IMPROVE-T and the red segments indicate the reduction caused by IMPROVE-C.

98 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

• the losses L(DT | C, TT) and L(DS | C, TS) associated with the function IMPROVE-
T are reduced depending on the coding matrix used. The normalized loss of the mECOC
matrix is larger than that of the eECOC matrix. This can be explained by the column size of
the eECOC matrix which results in more classifiers that commit less errors simultaneously.

To investigate the convergence properties of the Bunching.HDA algorithm we run the algorithm
formaxIterIn equal to 10 andmaxIterOut equal to 50. We plotted the total loss (6.4) associated
with Bunching.HDA against the number of the iterations of Bunching.HDA in Figure 6.4. Again,
the loss was normalized by the column size of the coding matrices.

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Number of iterations

Lo
ss

alpha=0.04
alpha=0.2
alpha=1
alpha=5
alpha=25

(a) mECOC Matrix

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Number of iterations

C
os

t

alpha=0.04
alpha=0.2
alpha=1
alpha=5
alpha=25

(b) eECOC Matrix

Figure 6.4: Loss associated with the Bunching.HDA algorithm.

Analyzing the results presented above we may reach the following conclusions for the Bunch-
ing.HDA algorithm:

• it reduces the total loss (6.4). The loss reduction is larger for earlier iterations.

• it converges rather quickly. Hence, the parameter maxIterOut can be set small.

• it converges irrespectively of the regularization parameter α.

• the total loss (6.4) is reduced depending on the coding matrix used. The normalized loss of
the mECOC matrix is larger than that of the eECOC matrix. This can be explained by the
fact (established above) that the losses L(DT | C, TT) and L(DS | C, TS) in the total loss
(6.4) are reduced proportionally to the column size of the coding matrices.

6.5.2 Experiments on Three Domain Adaptation Problems

This subsection provides the experiments of the Bunching.HDA algorithm applied on three domain
adaptation datasets: the Office dataset (Saenko et al., 2010), the Wikipedia dataset (Rasiwasia et al.,
2010) and the Multiple Feature (Mfeat) dataset (Bache and Lichman, 2013). The generalization
performance of the classification rules associated with the algorithm is estimated and compared with
that of baseline classifiers trained on the target data only and two domain adaptation approaches.

6.5. Experiments 99

Settings of the Bunching.HDA Algorithm

The Bunching.HDA algorithm was set up as follows. The reference coding matrix Cref was set
equal to the coding matrix of the One-vs-All class decomposition scheme. The regularization para-
meter α took values from the set {0.04, 0.02, 1, 5, 25} and the results are reported for the α value
that maximizes the accuracy. The iteration parameters maxIterIn and maxIterOut were set to
10 and 50, respectively (following the recommendation from the previous section). The parameter
of the backtracking method β of the function IMPROVE-T was set to 0.5. The two classification
rules associated with the Bunching.HDA algorithm were applied: Bunching.HDA.Pr and Bunch-
ing.HDA.NN.

We note that the reference coding matrix Cref was set equal to the One-vs-All coding matrix for
two reasons: (1) to reduce the computational complexity (Cref is aK×K matrix) and (2) to make the
setup of the Bunching.HDA algorithm comparable with that of the baseline classifiers (given in the
next subsection). In addition, theCref setup ensures a kind of worst-case generalization performance
of the Bunching.HDA.Pr and Bunching.HDA.NN classification rules due to small row and column
separation of the One-vs-All matrices. This means that the comparison with the baseline classifiers
is rather fair: the setup of Bunching.HDA is unfavorable for the algorithm.

Baselines

We compare the Bunching.HDA algorithm against two groups of baseline classifiers. The first
group is the group of classifiers trained on the target data only5. It consists of:

• kNN.T, a first nearest neighbor classifier (Mitchell, 1997).

• SVM.T, a multiclass SVM classifier with a linear kernel and default setting provided in
LIBSVM (Chang and Lin, 2011). It employs the One-vs-All class decomposition scheme
for multi class classification problems.

• Bunching.T, the Bunching algorithm (Dekel and Singer, 2002) with One-vs-All reference
coding matrix Cref, regularization parameter α equal to 1.0, and the number of iteration
equal to 100.

The second group is the group of domain adaptation approaches trained on the target data and
source data. It consists of:

• HFA, the Heterogeneous Feature Augmentation approach with default setting (Duan et al.,
2012): the regularization parameter was set to 1 and the parameter that controls the complex-
ities of the learned transformation matrices was set to 100. HFA employed the One-vs-All
ensemble of SVM classifiers with linear kernel in the common space.

• SHFR, the Sparse Heterogeneous Feature Representation approach with default setting (the
One-vs-All class decomposition scheme was used for asymmetric transformation). SFHR
employed the One-vs-All ensemble of SVM classifiers with linear kernel in the common
space.

5This is indicated with postfix T.

100 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

Experiments on the Office Dataset

The Office dataset was introduced in (Saenko et al., 2010) and was used in (Duan et al., 2012;
Kulis et al., 2011; Saenko et al., 2010). It contains 4652 images from three domains: Amazon,
dSLR, and webcam, that share the same 31 object categories (classes). The images in each domain
were captured with different photo machines under different lighting conditions. Figure 6.5 shows
images of laptops that form one of 31 categories of interest in the Amazon, dSLR and webcam
domains.

Figure 6.5: Laptop images taken from different domains.

To represent the images (Saenko et al., 2010; Duan et al., 2012; Kulis et al., 2011) extracted
SURF features (Bay et al., 2006). The images in the amazon and webcam domains are represented
by 800 histogram features whereas the images in the dSLR domain are represented by 600 histo-
gram features. We defined two classification problems. The first problem (resp. second problem)
considers the dSLR domain as target domain and the amazon domain (resp. the webcam domain)
as source domain. To estimate the accuracy of the classifiers we followed the evaluation (hold-out)
protocol given in (Duan et al., 2012; Kulis et al., 2011). 20 (resp. 8) training images were randomly
selected for the source domain amazon (resp. webcam) and 3 training images were randomly se-
lected from the target domain dSLR from each category. The remaining target dSLR images were
served as target test instances. The evaluation process was repeated 10 times. The results are
provided in Figure 6.2.

6.5. Experiments 101

Table 6.2: The classification accuracies (in percent) for the Office Data. Bold numbers
indicate accuracies that are statistically greater than others based on the two-tailed t-test
on significance level of 0.05.

Target Domain Source Domain kNN.T SVM.T Bunching.T HFA SHFR

dSLR
amazon

46.12 53.13 49.17
54.79 52.66

webcam 53.77 55.15

(a) Baseline results

Target Domain Source Domain Bunching.HDA.NN Bunching.HDA.Pr

dSLR
amazon 54.66 57.7
webcam 54.13 58.65

(b) Bunching.HDA results

Experiments on the Wikipedia Dataset

The Wikipedia dataset was introduced in (Rasiwasia et al., 2010). It contains 5732 instances from
two domains: text domain and image domain. Both domains have 2866 instances and share the
same 10 object categories (classes): art, biology, geography, history, literature, media, music, roy-
alty, sport, and welfare. The instances in the text domain were preprocessed in the following way.
The features were derived by a Latent Dirichlet Allocation (LDA) model to identify 10 continuous
features so that each feature corresponds to one of the ten categories and shows the probability of
being that category. The instances in the image domain were preprocessed as well. First SIFT
keypoints were extracted from the image instances (Lowe, 2004) and then the k-means clustering
was applied to convert the keypoints to a bag of visual words. Since k was set to 128, the image
instances were represented by 128 features.

For the Wikipedia dataset we defined one classification problem. This problem considers the
text domain as target domain and the image domain as source domain. To estimate the accuracy
of the classifiers we followed the evaluation protocol similar to that of the office dataset. For each
category 10 training text instances were randomly selected as target instances and the remaining
2856 text instances were used as target test instances. All the image instances served as source
instances. The evaluation process was repeated 10 times. The results are provided in Figure 6.2.

Table 6.3: The classification accuracies (in percent) for the Wikipedia Data.

Target Domain Source Domain kNN.T SVM.T Bunching.T HFA SHFR
Text Image 59.95 60.02 61.66 62.35 63.59

(a) Baseline results

Target Domain Source Domain Bunching.HDA.NN Bunching.HDA.Pr
Text Image 56.88 64.53

(b) Bunching.HDA results

102 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

Experiments on the Multiple Feature Dataset

The Multiple Feature (Mfeat) dataset is provided by (Bache and Lichman, 2013). It contains 2000

hand-written images of ten numbers from 0 to 9 (classes). The images were preprocessed us-
ing different techniques which resulted in six different domains: mfeat-fou (given with 76 Four-
ier coefficients), mfeat-fac (given with 216 profile correlation features), mfeat-kar (given with 64

Karhunen-Love coefficients), mfeat-pix (given with 240 pixel average features), mfeat-zer (given
with 47 Zernike moment features), and mfeat-mor (given with 6 morphological features). The
mfeat-mor domain is considered as target domain. In this context, we defined five classification
problems so that each remaining domain is considered as source domain once. To estimate the ac-
curacy of the classifiers we followed the evaluation protocol similar to that given in the previous two
subsections. For each category (number) 10 training mfeat-mor instances were randomly selected
as target instances and the remaining 1990 mfeat-mor instances were used as target test instances.
All the instances of the corresponding source domain served as source instances. The evaluation
process was repeated 10 times. The results are provided in Figure 6.4.

Table 6.4: The classification accuracies (in percent) for the Multiple Feature Data. Bold
numbers indicate accuracies that are statistically better than others based on the two-tailed
t-test on significance level of 0.05.

Target Domain Source Domain kNN.T SVM.T Bunching.T HFA SHFR

mfeat-mor

mfeat-fou

44.71 43.7 50.14

63.03 64.22

mfeat-fac 64.4 65.28

mfeat-pix 63.07 64.45

mfeat-kar 63.5 66.16

mfeat-zer 63.51 65.12

(a) Baseline results

Target Domain Source Domain Bunching.HDA.NN Bunching.HDA.Pr

mfeat-mor

mfeat-fou 70.33 61.55

mfeat-fac 70.91 62.47

mfeat-pix 69.41 58.12

mfeat-kar 71.1 60.53

mfeat-zer 70.01 65.01

(b) Bunching.HDA results

6.5.3 Results and Discussions

Tables 6.2, 6.3 and 6.4 show the accuracies of the Bunching.HDA classification rules and the
baseline methods obtained on the Office dataset, Wikipedia dataset, and Mfeat dataset respect-
ively. When comparing these accuracies we observe that the HDA methods outperform the clas-
sifiers trained on the target data in general. For example, the Bunching.HDA.NN rule improves
the accuracy with 25% on the Mfeat dataset compared with the kNN.T classifier (a classifier with
a similar classification rule) and the Bunching.HDA.Pr rule improves the accuracy in the range
of [2.87%, 14.87%] compared with the Bunching.T classifier (a target-domain version of Bunch-

6.6. Conclusion 103

ing.HDA). Thus, we conclude that using source data from different feature spaces can improve the
accuracy of the classification on unseen target instances.

When comparing the Bunching.HDA classification rules with the baseline HDA methods, HFA
and SHFR, we observe that they have a similar accuracy on the Wikipedia dataset while on the
Office dataset and the Mfeat dataset at least one of the Bunching.HDA classification rules is a clear
winner (the improvement in accuracy is in the range of 1%− 4% and it is statistically significant).
Thus, we may conclude that the Bunching.HDA classification rules are capable of outperforming
the HFA and SHFR methods (especially, taking into account the unfavorable experimental setting
of the Bunching.HDA algorithm)

When comparing the Bunching.HDA classification rules between each other, we observe that
the rules exhibit rather different performances. The Bunching.HDA.Pr rule outperforms the Bunch-
ing.HDA.NN rule on the Office dataset and Wikipedia dataset while the Bunching.HDA.NN rule
outperforms the Bunching.HDA.Pr rule on the Mfeat dataset. The Bunching.HDA.Pr rule is prefer-
able when the projected instances are more grouped around the code words of their classes in the
code space C. When this condition is violated, the Bunching.HDA.Pr tends to deteriorate. This
happens for the case of the Mfeat dataset. The Bunching.HDA.Pr rule achieves the highest ac-
curacy when the regularization parameter α is set too high (α = 50). However, the accuracy is
still lower than the accuracy obtained by the Bunching.HDA.NN rule (the average accuracy im-
provement is around 10%). From this we may conclude that the Bunching.HDA classification rules
correspond to quite different states of HDA. Thus, to decide which rule to apply we need to charac-
terize the HDA state produced by the Bunching.HDA algorithm. For example, relatively low values
of the sub-loss (6.2) minimized by the Bunching.HDA algorithm imply HDA states that fit better
the Bunching.HDA.Pr rule. Relatively high values of the sub-loss (6.2) imply HDA states that fit
better the Bunching.HDA.NN rule.

6.6 Conclusion

This chapter proposed the Bunching.HDA algorithm for the classification problem in the presence
of a target domain and several source domains. The algorithm first builds the encoding functions
(mappings) for the target data, source data, and class labels. Then it employs these functions to
project all the data and class labels in the common code space C. In this context we note that the
Bunching.HDA algorithm does not make any assumption on the underlying structure of the target
and source domains. It only necessities common class label information for a domain correspond-
ence.

To build the encoding functions the Bunching.HDA algorithm minimizes the total loss function
(6.4). This groups the projected target and source instances around the code words of their classes in
the code space C. To make different class instances more separable in C the class encoding function
is initialized using a coding matrix with well-presented separation properties.

The Bunching.HDA algorithm is an alternating-minimization algorithm. Its functions that im-
prove target and source encoding functions converge quickly in each iteration. This causes the
whole algorithm to converge quickly as well.

The availability of projected target and source instances together with the code words of class

104 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

labels in the code space C allows two built-in classification rules: the decoding rule of the class
decomposition schemes (Bunching.HDA.Pr) and the decoding rule of the instance decomposition
schemes (Bunching.HDA.NN). Bunching.HDA.Pr (resp. Bunching.HDA.NN) is preferable when
the sub-loss (6.2) is minimized for relatively low (high) values; i.e. when the spread of the same
class instances is relatively low (high) around the code words of their classes. In addition, it was
shown that any other classification rule is applicable: once the target data and source data are
projected in the code space C we can train any classification model on the union of these data.

The Bunching.HDA algorithm was experimentally tested on three domain adaptation problems.
The experiments showed that the Bunching.HDA algorithm is capable of outperforming standard
domain adaptation methods.

6.6. Conclusion 105

Appendix A: Derivation of the Bunching.HDA Algorithm

Lemma 1. (Properties of the logistic function)
For the logistic function σ(x) = 1

1+e−x , it holds that:

(a) σ(x) is monotonically increasing with σ′(x) = σ(x)(1− σ(x)).

(b) σ(−x) = 1− σ(x).

(c) log
(

σ(x)
1−σ(x)

)
= x and σ′(x) = log x

1−x .

Proof: By direct computation. �

Lemma 2. (Partial derivatives of the KL divergence)
The partial derivatives of the KL divergence of the multivariate Bernoulli distributions with para-
meter vectors p, q ∈ (0, 1)B are given by:

(a) ∂
∂p(b)

KL [p‖q] = log
(

p(b)
1−p(b)

)
− log

(
q(b)

1−q(b)

)
,

(b) ∂
∂q(b)

KL [p‖q] = q(b)−p(b)
q(b)(1−q(b)) .

Proof: By direct computation. �

Lemma 3. (Differentiation of the loss function)

(a) For any i ∈ {1, . . . , B}, and j ∈ {1, . . . , d}, the differentiations of the loss function is given
by:

∂KL [σ (Cy) ||σ (Tx)]

∂T (i, j)
= (σ (−C (i, ·) y)σ (T (i, ·) y)− σ (C (i, ·) y)σ (−T (i, ·) y))x(j).

(b) For any i ∈ {1, . . . , B} and j ∈ {1, . . . ,K}, the differentiations of the loss function is
given by:

∂KL [σ (Cy) ||σ (Tx)]

∂C(i, j)
= (C (i, ·) y − T (i, ·)x)σ (C (i, ·) y)σ (−C (i, ·) y) y(j),

where

- d = dT , (x, y) ∈ XT × Y and T = TT if the domain is target;

- d = dS , (x, y) ∈ XS × Y and T = TS if the domain is source.

Proof: The differentiations can be obtained by using Lemma 1 and Lemma 2 and applying the
chain rule for differentiation. �

Preposition 1. (Gradients of the loss function O)

106 Chapter 6. The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation

(a) For any i ∈ {1, . . . , B}, and j ∈ {1, . . . , dT }:

∂O
∂TT (i, j)

=
∑

(xT ,yT)∈DT

xT (j)
(
σ
(
−C (i, ·) yT

)
σ
(
TT (i, ·)xT

)
− σ

(
C (i, ·) yT

)
σ
(
−TT (i, ·)xT

))
,

(b) For any i ∈ {1, . . . , B}, and j ∈ {1, . . . , dS}:

∂O
∂TS(i, j)

=
∑

(xS ,yS)∈DS

xS(j)
(
σ
(
−C (i, ·) yS

)
σ
(
TS (i, ·)xS

)
− σ

(
C (i, ·) yS

)
σ
(
−TS (i, ·)xS

))
,

(c) For any i ∈ {1, . . . , B} and j ∈ {1, . . . ,K}:

∂O
∂C(i, j)

=

[
(1 + α) + (|DTj |+ |DSj |)C(i, j)− α(|DTj |+ |DSj |)Cref(i, j)

−(
∑

(xT ,yT)∈DTj

(TT (i, ·)xT +
∑

(xS ,yS)∈DSj

TS(i, ·)xS))

]
σ(C(i, j))σ(−Cref(i, j)).

where

• DTj is the subset of DT of instances (xT , yT) with yT = yj ∈ Y ;

• DSj is the subset of DS of instances (xS , yS) with yS = yj ∈ Y .

Proof:
(a) The first-order partial derivative of

O = L(DT | C, TT) + L(DS | C, TS) + α (L(DT | Cref, C) + L(DS | Cref, C))

is equal to that of L(DT | TT , C). Thus it is equal to

∂O
∂TT (i, j)

=
∂L(DT | C, TT)

∂TT (i, j)
=

∂

∂TT (i, j)

∑
(xT ,yT)∈DT

KL
[
σ
(
CyT

)
‖σ
(
TTxT

)]
.

Using Lemma 3a, this gives part (a) of the preposition. �

(b) Similarly, the partial derivative of O w.r.t. TS(i, j) is equal to that of L(DS | TS , C). Thus
this part of the preposition can be proven as part (a). �

(c) For ∂O
∂C(i,j)

, we use Lemma 3b, which gives the expression:

∑
(xT ,yT)∈DT

(
C (i, ·) yT − TT (i, ·)xT

)
σ
(
C (i, ·) yT

)
σ
(
−C (i, ·) yT

)
yT (j)+

+
∑

(xS ,yS)∈DS

(
C (i, ·) yS − TS (i, ·)xS

)
σ
(
C (i, ·) yS

)
σ
(
−C (i, ·) yS

)
yS(j)+

6.6. Conclusion 107

+ α
∑

(x,y)∈DT+DS

(C (i, ·) y − Cref (i, ·) y)σ (C (i, ·) y)σ (−C (i, ·) y) y(j),

where DT + DS denotes the concatenation of the datasets DT and DS . Also, here it is noted
that the factor yT (j), yS(j) or y(j) is either 1 (if yT (j), yS(j), y(j) = ej ∈ Y (i.e. class j is
involved)) or zero otherwise. Then also C(i, ·)yT , C(i, ·)yS or C(i, ·)y equal C(i, j) and likewise
Cref(i, ·)y = Cref(i, j). Introducing the sets DTj and DSj , as indicated, we obtain that:

∂O
∂C(i, j)

=

(∑
(xT ,yT)∈DTj

(
C (i, j)− TT (i, ·)xT

)
+

∑
(xS ,yS)∈DSj

(
C (i, j)− TS (i, ·)xS

)
+ α

∑
(x,y)∈DTj+DSj

(C (i, j)− Cref (i, j))

)
σ (C (i, j))σ (−C (i, j)) ,

from which part (c) of the proposition follows.�

Preposition 2. (Optimal choice of the mapping C)
For a fixed choice of TT and TS , the criterion O has a unique stationary point, which is the
minimum, achieved at:

C(i, j) =
α

1 + α
Cref (i, j)+

1

1 + α

(
1

|DTj |+ |DSj |
(∑
(xT ,yT)∈DTj

TT (i, ·)xT+
∑

(xS ,yS)∈DSj

TS (i, ·)xS
))

with i ∈ {1, ..., B} and j ∈ {1, ...,K}.

Proof: The fact thatO has a unique stationary point for C when TT and TS are kept fixed, follows
from Preposition 1c, which makes that ∂O

C(i,j)
= 0, is equivalent to a linear equation for C(i, j). It

is a minimum, because O clearly has a minimum (with a diagonal Hessian w.r.t. C). �

Note that Proposition 2 makes clear what the effect of the regularization parameter α is: it
achieves a linear interpolation with weight α

1+α
and 1

1+α
between the proposed prototype Cref (i, j)

and the data-average for class j:

1

|DTj |+ |DSj |
(∑
(xT ,yT)∈DTj

TT (i, ·)xT +
∑

(xS ,yS)∈DSj

TS (i, ·)xS
)
,

considering target and source data.

7
IHC Classification of Breast Cancer

Subtypes Using Bunching.HDA

This chapter is based on the following submission:
Ismailoglu, F., Cavill R., Smirnov, E., Zhou, S., Collins, P. and Peeters, R. (2017). Heterogeneous
Domain Adaptation for IHC Classification of Breast Cancer Subtypes.
To appear in IEEE/ACM Transactions on Computational Biology and Bioinformatics.

This chapter considers the problem of classifying breast cancer instances according to their
immunohistochemistry (IHC) subtypes (Onitilo et al., 2009). This problem is important, since
breast cancer is the most commonly diagnosed cancer type and its subtypes vary greatly in terms of
clinical outcomes and survival times (Siegel et al., 2016; Dent et al., 2007). The data we used in this
chapter come from two breast-cancer domains that have different feature spaces. The first domain
represents instances with protein measurements while the second domain represents instances with
gene measurements. Both domains share the same set of class labels; i.e. IHC subtypes.

Solving the IHC classification problem is an open question in bioinformatics, since the protein
data and gene data need to be integrated. In this context we note that the main characteristics of
the problem such as data heterogeneity and common class labels match well with the scope of
the classification problems for the Bunching.HDA algorithm (introduced in the previous chapter).
Thus we consider the IHC classification of breast cancer as a heterogeneous domain adaptation
problem and employ the Bunching.HDA algorithm. We take the current chapter as an application
of the Bunching.HDA algorithm. The experiments we conducted in this chapter show that the
Bunching.HDA algorithm solves successfully the IHC classification problem with a substantial
accuracy gain compared with baseline classifiers trained on a single domain.

This chapter consists of 7 sections. It begins with the background section 7.1 that emphasizes
the importance of breast-cancer classification and motivates the use of the Bunching.HDA algorithm
for the IHC classification problem. In Section 7.2, we reveal the potential benefits of domain ad-
aptation for bioinformatics reviewing some prominent applications. In Section 7.3 we provide an
insight into the subtypes of breast cancer based on the immunochemistry. In Section 7.4, we explain
the process of deriving the protein data and gene data. In section 7.5, we report the experimental
results for the Bunching.HDA algorithm and the baseline classifiers. Finally, in Section 7.6, we

7.1. Background 109

conclude the chapter.

7.1 Background

Breast cancer is by far the most common cancer type and the leading cause of cancer death in women
worldwide with over 1.6 million new cases diagnosed each year (Siegel et al., 2016). Depending on
the active mutations in the tumor, breast cancers differ considerably in molecular alterations, cellular
composition, and clinical outcomes. This diversity is reflected by its immunohistochemistry (IHC)
subtypes. Disclosing these subtypes is very important for diagnosing and treating breast cancer.

In bioinformatics, a good deal of study on breast cancer have been conducted using breast-
cancer datasets collected using various measurement technologies (Li et al., 2002; Campiglio et al.,
2008). The data collected in one set is usually not sufficient to build an accurate classifier that
predicts the breast cancer subtypes. This raises the need for integrating datasets and makes the data
integration an important research topic in bioinformatics (Palsson and Zengler, 2010). However,
several alternatives thats have been recently proposed in machine learning were not fully exploited
in bioinformatics. Some of them are methods from the domain adaptation (DA) field that allow
using multiple data types in the learning phase (Mei et al., 2011).

In this chapter, we explore the potential of domain adaptation for the problem of classify-
ing breast cancer instances according to their immunohistochemistry (IHC) subtypes (Dent et al.,
2007). The data we use are based on two breast-cancer domains that have different feature spaces.
The first domain (that we call protein domain) represents instances with protein measurements
while the second domain (that we call gene domain) represents instances with gene measurements.
The data heterogeneity implies that the IHC classification problem is essentially a heterogeneous
domain adaptation (HDA) problem. Since the protein and gene domains share the same set of class
labels (i.e. IHC subtypes), the Bunching.HDA algorithm is applicable in this case. We follow two
scenarios when applying the algorithm. In the first scenario, we consider the protein domain as
target domain and the gene domain as source domain. That is, the protein data represents the distri-
bution from which future instances will come and the gene data is just an auxiliary domain that is
used only to improve classification models. In the second scenario, we shift the roles of the protein
data and the gene data, meaning that the gene data become target data and the protein data become
source data.

Applying the Bunching.HDA algorithm for the IHC classification problem has several benefits.
First, the algorithm makes no assumptions regarding the structure of the datasets that it tries to ad-
apt (in contrast with the post popular DAMA approach (Wang and Mahadevan, 2011)). Second, it
converges fast. Third, the algorithm allows for a variety of classification rules as it classifier inde-
pendent. Bunching.HDA.Pr, Bunching.HDA.NN, and any classifier can be trained on the projected
data.

These benefits come with a drawback shared with the other domain adaptation methods that
are symmetric. Concretely, the features of the common space created by the Bunching.HDA are
difficult to interpret and thus it is hard for experts to employ the classification models trained on
the projected data for hypothesis generation. Nevertheless, the application of the Bunching.HDA
algorithm for the IHC classification problem is one of the first HDA works in the context of bioin-

110 Chapter 7. IHC Classification of Breast Cancer Subtypes Using Bunching.HDA

formatics.

7.2 Data Integration and Domain Adaptation in Bioinform-
atics

The data integration and domain adaptation methods have an enormous potential in Bioinformat-
ics. There are many current bioinformatics problems where the same elements have been measured
by different technologies, for instance, gene expression measured by microarrays and RNAseq.
Mapping these different datasets to a common space, accounting for the different background dis-
tributions of measurements and noise with the different technologies might, for instance, allow the
reuse of archived microarray data with the more recently acquired RNAseq. The data-integration
and domain-adaptation methods may also be applicable to the widespread problem of batch effects
in omics data (Leek et al., 2010), where data acquired in one setting is not immediately relatable
to data acquired from a similar population in another setting (for instance data processed in dif-
ferent laboratories, at different times or samples collected in different hospitals). Additionally, the
data-integration and domain-adaptation methods may prove useful when the same experiments are
performed on different species, to relate the measurements between the two studies or in toxicoge-
nomics between omics measurements taken after dosing with similar compounds.

7.2.1 Data Integration Applications

Current data integration methods in bioinformatics tend to come from one of four classes of methods
(Cavill et al., 2015): concatenation methods, correlation methods, pathway methods, and multivari-
ate model methods. The concatenation methods make a combined feature space by concatenating
the datasets, possibly with block weighting to prevent the over dominance of the larger dataset and
then apply standard methods on the concatenated data. An example of this would be the integration
of transcriptomic and metabolomic data by Shen et al. (2012) for the classification of glioblastomas.
The correlation methods look for correlative relationships between items in different datasets. How-
ever, as these methods tend to be descriptive of the datasets, they are rarely used when classification
is the aim. The pathway methods map the data onto biological pathways or networks and then ana-
lyse these mappings (Cavill et al., 2011). The multivariate model methods generally utilise the PLS
family of methods, for instance O2PLS (Trygg and Wold, 2003), to relate the datasets to each other
in a linear model. O2PLS is conceptually the most similar to domain adaptation. It is a symmet-
ric model, which represents two datasets in terms of five matrices, the matrix modelling the joint
variation, two matrices modelling the unique variation in each dataset, and two residual matrices
containing the unmodelled variation for each dataset.

7.2.2 Domain Adaptation Applications

The DA has a few applications in bioinformatics, as it is a relatively new field. Most of the ap-
plications are homogeneous domain adaptation (hDA) applications when the domains to be adapted

7.3. IHC Subtypes of Breast Cancer 111

share the same feature space. We are aware of just one heterogeneous domain adaptation (HDA)
application when the domains have different feature spaces. Below we first review the hDA applic-
ations and then the HDA one.

Ganchev et al. (2011) proposed one of the first applications in the hDA that is based on classi-
fication rule adaptation. It first derives classification rules on the data from a medical clinic, which
represents a source domain, to predict leukemia or lung cancer among the patients. Then, the rules
are transferred to the target domain, the clinic of interest with very few patient’s cases. The rules are
adapted to reflect the target data using some incremental rule-learning techniques. The application
is pretty straightforward, however, it has to be used with a care. Continuous features need to have
the same range over the domains so that the discretization process (used for rule formation) results
in the same discrete features.

Dahlmeier and Ng (2010) proposed to perform semantic role labeling (SRL) on biomedical
articles by adapting an SRL system from the newswire domain. A hDA process was clearly needed
because of the lack of a large annotated biomedical corpus that is available in the bioinformatics
domain. Three hDA methods were applied: instance weighting (Jiang and Zha, 2007), instance
augmenting (Hall, 2004), and instance pruning (Jiang and Zha, 2007). The experiments showed
that using hDA it is possible successfully train a SRL system for biomedical articles with less
annotation efforts (i.e. costs).

Schweikert et al. (2009) investigated the problem of how to recognize acceptor splice sites
on a gene-sequence level in the less studied model organisms such as C.remanei, P.pacificus and
D.melanogaster. Due to the small amount of the available data, they considered the problem as a
hDA problem. As a source domain they employed the domain of the organism C.elegans as it is a
well-studied organism. Six SVM-based hDA methods were applied. The experiments showed the
hDA significantly improves models for the domains of C.remanei, P.pacificus, and D.melanogaster
compared with models trained on a single data.

To our knowledge, the only work in HDA related to bioinformatics has been recently presented
by Breckels et al. (2016). The task was to predict subcellular localization of protein sequences.
In addition to the GO terms, a wide variety of auxiliary sources such as Human Protein Atlas
and immunocytochemistry data were exploited. For this purpose, the authors adapted to HDA
two methods, k-NN TL and SVM TL, originally proposed in (Wu and Dietterich, 2004) for hDA.
Although, the experimental results look promising, applying the methods can be difficult, since the
query (test) instances require a view (features values) from the source domains in addition to the
target ones. This differs significantly from the Bunching.HDA algorithm which assumes a view
from one domain only.

7.3 IHC Subtypes of Breast Cancer

There are four common subtypes of breast cancer, these correlate with groups defined by three
proteins ER, PR, and HER2 (Onitilo et al., 2009): HER2 overexpressing (HER2 positive), triple
negative (basal-like), luminal A, and luminal B. HER2 overexpressing breast cancer is characterized
by the presence of HER2. In triple negative breast cancer, however, all three proteins are absent.
The shortest survival times are observed in patients who have HER2 positive or triple negative

112 Chapter 7. IHC Classification of Breast Cancer Subtypes Using Bunching.HDA

subtypes. In fact it was reported that triple negative cancers are more aggressive and more resistant
to treatment (Dent et al., 2007). In contrast to the other two subtypes, luminal A and luminal B were
first identified using whole genome gene expression data from microarrays (Perou et al., 2000) and
do not directly relate to these three proteins. However, luminal A subtype tends to have either a
high expression of oestrogen receptor (ER) or progesterone receptor (PR) and (HER2) is negative.
Luminal B is similar to luminal A in terms of the existence of ER and PR markers, yet it differs with
respect to HER2 which tends to be positive in this case. When it comes to the clinical outcomes
luminal A is more favourable than luminal B, but patients with luminal A or B tumors respond
similarly to endocrine therapies (Prat et al., 2012).

The three proteins ER, PR, and HER2 which characterize these subtypes can be measured
through immunohistochemistry and thus these classes are assigned in this way in a clinical setting.
However, we know that the protein and gene measurements taken from these tissues and measured
through high-throughput technologies should allow the prediction of these immunohistochemical
markers, and therefore also the subtype classes identified above.

The classification of breast cancer samples, particularly from gene expression data, is a well
studied problem. There have been many proposed gene signatures (Prat et al., 2011; Sotiriou and
Pusztai, 2009; Weigelt et al., 2010). However the overlap between proposed gene signatures, par-
ticularly those predicting prognosis, was often very small (Weigelt et al., 2011). However, many of
these gene signatures focussed on prognosis rather than classification of subtypes as we do. But,
as prognosis strongly relates to these subtypes, the genes/proteins distinguishing these subtypes
feature will heavily in these signatures of prognosis.

Table 7.1: The subtypes of breast cancer based on IHC biomarkers.

ER PR HER2 IHC Subclass
1 1 0

Luminal-A0 1 0
1 0 0
1 1 1

Luminal-B0 1 1
1 0 1
0 0 0 Triple Negative
0 0 1 Her2 Over.

7.4 Data Derivation and Pre-processing

This section explains the heterogeneous data for the IHC classification problem. First, it reveals
how the data was derived and then how it was preprocessed.

7.4. Data Derivation and Pre-processing 113

7.4.1 Derivation

The data used in this study were taken from The Cancer Genome Atlas (TCGA) (Weinstein et al.,
2013). This is a large repository of datasets from many types of tumors. In total there are over
11,000 samples in the database, and breast cancer is the most represented cancer type with over
1000 samples stored. Having removed protein and gene data from samples which were missing
data on the IHC biomarker(s), we had 578 samples with protein data available and 419 with gene
expression data measured through microarrays.

7.4.2 Pre-processing

Originally, there were 284 protein features in the protein data. However some proteins in the data
were isoforms and in this dataset we see only a single non-zero entry per patient amongst the
isoforms of a single protein. This led us to merge the isoform and to construct a single column for
a set of isoforms. As a result we ended up with 211 distinct protein-related features.

The gene dataset contained 17815 features per sample. Although the employed domain adapt-
ation algorithm Bunching.HDA can handle such big data in theory, from the practical point of view,
execution times restrict using this amount of data. Therefore, we reduced the number of genes using
a subset selection method Support Vector Machine–Recursive Feature Elimination (SVM-RFE) for
multiclass problems (Zhou and Tuck, 2007).

MSVM-RFE is an iterative backward-elimination method. In each iteration it first builds K
SVM classifiers using the One-vs-All class decomposition scheme (the number K of classes is
equal to 4 in our case). This results in a matrix W with entries w(i, j) each corresponding the
coefficient of the i-th SVM classifier for the j-th feature (i ∈ {1, ...,K} and j ∈ {1, ..., d} where d
is the number of features in the current iteration). The features j are then ranked with respect to the
ranking criterion

∑K
r=1 w

2
rj . Finally, the feature, i.e. the gene in our case, with the smallest ranking

criterion is eliminated. We applied the MSVM-RFE method on the gene dataset. We stopped the
process of backward-elimination when the coefficients became relatively large. As a result we
obtained a subset of 1069 genes (features) that we used in our experiments to represent the gene
data.

In the protein and the gene data, the patients are labeled according to their immunohistochem-
ically measured ER, PR, and HER2 status resulting in 8 potential groups. We used the correlation
between these markers and the four breast cancer subtypes: luminal A, luminal B, HER2 overex-
pressing, and triple negative as described in the introduction, to aggregate these groups into clin-
ically meaningful classes. This resulted in the class distributions for the protein and the gene data
shown in Table 7.2.

Table 7.2: Class Frequencies in the Protein and the Gene Datasets.

Dataset luminal A luminal B Triple Neg. HER2 Over.
Protein 349 98 95 36
Gene 257 78 60 24

114 Chapter 7. IHC Classification of Breast Cancer Subtypes Using Bunching.HDA

7.5 Experiments

This section presents our experiments, results, and initial conclusions for the IHC classification
problem. The data we employed for this problem is the heterogeneous data which derivation is
provided in the previous section. The experiments involve the Bunching.HDA algorithm together
with several associated classification rules. The generalization performance of these rules is com-
pared with that of baseline classifiers trained on one-domain data.

7.5.1 Settings of the Bunching.HDA Algorithm and Classification Rules

The Bunching.HDA algorithm was set up as follows. The reference coding matrix Cref was set to
the coding matrix of the eECOC class decomposition scheme. The regularization parameter α took
values from the set {0.04, 0.02, 1, 5, 25}. The iteration parameters maxIterIn and maxIterOut
were set to 10 and 50, respectively. The parameter of the backtracking method β of the function
IMPROVE-T was set to 0.5.

We note that the reference coding matrix Cref was set to the eECOC coding matrix for three
reasons:

(1) the number of classes (K) is 4; i.e. is small, which results a 4× 7 Cref matrix1. These matrix
sizes makes the Bunching.HDA computations feasible.

(2) the number of latent features in the common code space C created by the Bunching.HDA
algorithm is maximized and it is equal to 7. The number may not be big, but is the largest
possible compared with the cases when we use any other class decomposition scheme.

(3) the distance between the code words in Cref of different class labels is maximized. In fact,
each code word is 4 bits away from the other code words in our case. This helps instances of
different breast cancer subtypes to be projected to different locations in the common space
C.

Four possible classification rules associated with the Bunching.HDA algorithm were applied:
the Bunching.HDA.Pr rule, the Bunching.HDA.NN rule, the Bunching.HDA.RF rule, and the Bunch-
ing.HDA.NB rule. The first two rules were defined in Section 6.4.2. The Bunching.HDA.RF rule
is a Random Forest classifier (with 30 random decision trees) (Breiman, 2001) trained on the pro-
jected data in the common code space. The Bunching.HDA.NB rule is a Naive Bayes classifier
(Domingos and Pazzani, 1997) trained on the projected data in the common code space.

7.5.2 Settings of the Baseline Classifiers

We compared the accuracy of the four Bunching.HDA classification rules against four baseline
classifiers. The baseline classifiers were trained on one domain data only2 and are specified as
follows:

• kNN.T is a first nearest neighbor classifier (Mitchell, 1997).

1In general, the eECOC coding matrix is a K × 2K−1 − 1 matrix.
2This is indicated with postfix T.

7.5. Experiments 115

• Bunching.T is a Bunching algorithm (Dekel and Singer, 2002) with an eECOC reference
coding matrix Cref, regularization parameter α equal to 1, and the number of iteration equal
to 100.

• RF.T is a random forest classifier with 30 random decision trees. For the protein (gene) data
each tree is based on 15 (32) randomly chosen features. Here 15 (32) is approximately the
square root of 211 (1069), the number of protein-related (gene-related) features.

• NB.T is a Naive Bayes classifier where the features are assumed to follow normal distribution
for each class.

The baseline classifiers were used to show whether the heterogeneous domain adaptation provided
by the Bunching.HDA algorithm improves the accuracy when considering the results yielded by the
classifiers trained on a single data. To make the comparisons fair the comparison was made between
the Bunching rules and similar baseline classifiers. More precisely, the Bunching.HDA.Pr rule was
compared with Bunching.T, the Bunching.HDA.NN rule was compared with kNN.T, the Bunch-
ing.HDA.RF rule was compared with RF.T, and the Bunching.HDA.NB rule was compared with
NB.T.

7.5.3 Evaluation Settings

We used the gene and the protein datasets in both target and source domain roles. That is, each was
used as the target and the source data in turn. The accuracy of the baseline classifiers was estimated
using the conventional 5-fold cross validation method applied on one domain. The accuracy of the
Bunching.HDA classification rules was estimated using a different 5-fold cross validation method.
This 5-fold cross validation was organized as follows: for each k ∈ {1, . . . , 5} the training data
consisted of four randomly chosen folds of the target data and the same source data both projected
in the common code space C. The remaining fifth fold of the target data also projected in C was
used for testing. In this way the estimated accuracy indicated the influence of the heterogeneous
domain adaptation provided by the Bunching.HDA algorithm.

7.5.4 Experimental Results

Table 7.3 and Table 7.4 show accuracy of the Bunching.HDA classification rules for six values of
the regularization parameter α from the set {0.04, 0.02, 1, 5, 25}. The highest accuracy for each
rule is achieved for different value of α compared with other rules. This can be explained by the
different nature (inductive bias) of the rules (Mitchell, 1997).

116 Chapter 7. IHC Classification of Breast Cancer Subtypes Using Bunching.HDA

Table 7.3: Accuracy (in percent) of the Bunching.HDA classification rules for different
values of the regularization parameter α. The target data is the protein data and the source
data is the gene data. The best results are given in bold.

Method 0.01 0.1 1 10 50 100
Bunching.HDA.NN 66.96 68.14 69.03 69.26 69.19 68.89
Bunching.HDA.Pr 73.20 74.01 74.01 73.53 73.65 73.58
Bunching.HDA.RF 74.38 73.01 70.58 73.52 73.52 73.86
Bunching.HDA.NB 74.73 74.57 74.74 75.43 74.56 74.90

Table 7.4: Accuracy (in percent) of the Bunching.HDA classification rules for different
values of the regularization parameter α. The target data is the gene data and the source
data is the protein data. The best results are given in bold.

Method 0.01 0.1 1 10 50 100
Bunching.HDA.NN 67.51 70.40 74.70 75.41 73.51 75.65
Bunching.HDA.Pr 72.55 74.69 75.89 74.28 74.38 74.27
Bunching.HDA.RF 71.60 78.04 74.46 76.37 76.37 78.99
Bunching.HDA.NB 73.50 72.78 77.33 77.33 77.79 78.51

In addition to the conventional accuracy shown in Tables 7.3 and 7.4, we also evaluated the
generalization performance of all the classifiers in terms of balanced accuracy, as both protein and
gene data suffer from imbalanced classes (See Table 7.2). Concretely, balanced accuracy is the
arithmetic average of the class specific accuracies thus is invariant to class distributions and is often
preferable to the conventional accuracy in the presence of imbalanced data (Brodersen et al., 2009).
Formally, given a confusion matrix M the balanced accuracy λ in percent is given by:

λ =
1

K

K∑
j=1

M(j, j)∑K
i=1M(i, j)

× 100, (7.1)

whereK is the number of classes and the rows (resp. columns) ofM correspond to the actual (resp.
predicted) classes.

Table 7.5 and Table 7.6 show balanced accuracy of the Bunching.HDA classification rules for
the same six values of the regularization parameter α. Again, the highest balanced accuracy for
each rule is achieved for different value of α compared with other rules. Comparing the results in
Tables 7.3 and 7.4 with those in Tables 7.5 and 7.6, we note that the best performance values of α
are different for the conventional accuracy and balance accuracy. Thus the choice of α also depends
on the evaluation method.

7.5. Experiments 117

Table 7.5: Balanced accuracy (in percent) of the Bunching.HDA classification rules for
different values of the regularization parameter α. The target data is the protein data and
the source data is the gene data. The best results are given in bold.

Method 0.01 0.1 1 10 50 100
Bunching.HDA.NN 58.29 58.46 61.99 61.30 60.61 61.06
Bunching.HDA.Pr 56.5 64.31 57.63 55.94 57.41 55.27
Bunching.HDA.RF 64.58 64.23 60.43 63.64 63.32 62.96
Bunching.HDA.NB 63.73 67.70 68.20 68.14 67.57 67.62

Table 7.6: Balanced accuracy (in percent) of the Bunching.HDA classification rules for
different values of the regularization parameter α. The target data is the gene data and the
source data is the protein data. The best results are given in bold.

Method 0.01 0.1 1 10 50 100
Bunching.HDA.NN 56.96 59.80 61.51 67.66 64.29 63.60
Bunching.HDA.Pr 61.42 62.41 63.12 62.01 61.49 62.70
Bunching.HDA.RF 55.95 64.85 62.17 62.38 62.91 66.14
Bunching.HDA.NB 60.36 54.39 58.2 57.63 57.81 63.61

Table 7.7 shows the (conventional) accuracies of the Bunching.HDA.Pr rule, Bunching.HDA.NN
rule, Bunching.HDA.RF rule, and Bunching.HDA.NB rule together with those of the baseline clas-
sifiers. Each Bunching.HDA rule was compared with a corresponded baseline classifier. The im-
provement in the breast cancer classification ranges from 2% to 12% and these improvements were
found to be statistically significant based on two-tailored t-test at 0.05. Thus, our main conclusion
is that adapting the protein data and the gene data together results in a more accurate classification
of the IHC breast cancer subtypes compared with that of the baseline classifiers trained on one
domain.

Table 7.7: Accuracies (in percent) for the protein data and gene data. Bold numbers
indicate statistically better results obtained by a paired t-test at 0.05 significance level
within groups given with double bars.

Target Domain Source Domain kNN.T Bunching.HDA.NN bunching.T Bunching.HDA.Pr
Protein Gene 62.39 69.26 62.98 74.01
Gene Protein 72.16 75.65 73.87 75.89
Target Domain Source Domain RF.T Bunching.HDA.RF NB.T Bunching.HDA.NB

Protein Gene 71.42 74.38 63.25 75.43
Gene Protein 76.42 78.99 77.01 78.51

The balanced accuracy results are parallel to the conventional accuracy results, as shown in
Table 7.8. Indeed, it is fair to claim that adapting the protein data and gene data together results
in class balanced classifiers that are more accurate for each breast cancer subtype, especially when

118 Chapter 7. IHC Classification of Breast Cancer Subtypes Using Bunching.HDA

the protein data is the target domain. In this case, the balanced accuracy is improved by up to 8%

over the respective baseline classifier. In addition, we note that the Bunching.HDA classification
rules do not impose extra problems when handling class-unbalanced data compared to the baseline
methods. This can be seen by the fact that the reduction in the balance accuracy performance is
more or less the same for the Bunchihg.HDA rules and the baseline classifiers.

Table 7.8: Balanced accuracies (in percent) for the protein data and gene data. Bold
numbers indicate statistically better results obtained by a paired t-test at 0.05 significance
level given with double bars.

Target Domain Source Domain kNN.T Bunching.HDA.NN bunching.T Bunching.HDA.Pr
Protein Gene 55.26 61.99 61.87 64.31
Gene Protein 65.14 67.66 64.49 63.12

Target Domain Source Domain RF.T Bunching.HDA.RF NB.T Bunching.HDA.NB
Protein Gene 56.23 64.58 61.49 68.20
Gene Protein 60.63 66.14 69.85 63.61

Figure 7.1 shows four projections in the common code space C where in each case instances
of one breast cancer subtype are shown using the dimensions provided by the Principle Component
Analysis (PCA). Clearly, for all breast cancer subtypes, the instances of the protein data and those of
the gene data are mapped nearby in the common space, as desired. Additionally, this may suggest
that the Bunching.HDA algorithm can be used to find out similar gene expression patterns for a
given protein expression pattern and vice versa. Considering the centers of the subtypes, Figure 7.1
reveals that for both the protein and the gene data breast cancers of type luminal A and luminal B
are near to each other which is to be expected given the ambiguity between the original definitions
of these subtypes based on the three immunohistochemical markers. Also, we observe that the triple
negative instances are far apart from the luminal A and luminal B instances, as expected.

7.6 Conclusion

This chapter showed that the problem of classification of IHC subtypes of breast cancer can be
viewed as a HDA problem. There are at least two different feature space domains, the protein
domain and gene domain, and they share the same class labels. The latter feature makes possible
the use of the Bunching.HDA algorithm among other HDA methods. The algorithm was chosen
because: it does not make assumptions on the data structure, it can handle class imbalanced prob-
lems, and it allows several classification rules. The algorithm results in an accuracy gain of the
Bunching.HDA rules when applied for the IHC classification. It was shown experimentally that this
gain is statistically significant and ranged from 2% to 12% compared with the baseline classifiers.
Thus, our main conclusion is that adapting the protein data and the gene data together results in a
more accurate classification of the IHC breast cancer subtypes compared with those trained on one
domain..

The Bunching.HDA benefits come with a drawback shared with other symmetric HDA meth-
ods: the Bunching.HDA features in the common code space are difficult to interpret and thus it
is hard for experts to employ the classification models trained on the projected data for hypothesis

7.6. Conclusion 119

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

PC 1 (87%)

PC
 2

 (1
1%

)
luminal−A

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

PC 1 (87%)

PC
 2

 (1
1%

)

luminal−B

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

PC 1 (87%)

PC
 2

 (1
1%

)

Triple Neg.

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

PC 1 (87%)

PC
 2

 (1
1%

)

Her2 Over.

Figure 7.1: The protein data and gene data in the common code space given with two
PCA dimension PC1 and PC2 preserving 98% of the data variance. In each subplot the
protein samples are marked with circles and the gene samples are marked with pluses.

generation. Nevertheless, the application of the Bunching.HDA algorithm for the IHC classification
problem is one of the first HDA works in bioinformatics. Therefore, this chapter shows the promise
of using HDA methods in bioinformatics in improving generalization performance when multiple
omics datasets are available.

8
Conclusions

This is the final chapter that concludes this thesis. We first answer the research questions formulated
in Chapter 1, in view of our findings in Chapters 3-7. Then, we sketch future work by providing
possible research directions.

8.1 Answers to the Research Questions

In Chapter 1, we argued that further development of class decomposition schemes can proceed
along two research lines. Below we first provide answers to the two research questions which fall
within the first research line, and then we discuss our answers to the other two research questions,
which fall within the second research line.

The first research line was related to improving class decomposition schemes for boosting the
generalization performance. The research questions formulated in this context are as follows:

(Q1) How can the problem of difficult binary classification problems be solved?

(Q2) How can the problem of error dependency of binary classifiers be solved?

These research questions were both addressed in Chapters 3 and 4. We first provide the answers
from Chapter 3 and then from Chapter 4.

In Chapter 3 we proposed instance decomposition schemes (IDS) as an alternative to class
decomposition schemes. An instance decomposition scheme consists of several instance partitions.
Every instance has a code word of which the bits indicate the set of the instance in each partition.
Instance classification assumes two instance decomposition schemes: encoding and decoding. The
encoding IDS is used to train binary classifiers and to encode any query instance. The decoding
IDS is used to decode the class of an instance.

We proposed to initialize the encoding IDS according to some standard class decomposition
scheme, and to learn the decoding IDS from the data through the encoding IDS. In this case we
showed that the simultaneous and non-simultaneous errors of the binary classifiers can be com-
pensated for, during the classification process. We note that difficult classification problems can
cause both simultaneous errors and non-simultaneous errors, while error dependency of the binary
classifiers causes essentially simultaneous errors. Thus, we conclude that the instance decomposi-
tion schemes are capable of handling difficult classification problems and error dependency of the

8.1. Answers to the Research Questions 121

binary classifiers.

In Chapter 4 we proposed two weighted decoding algorithms to handle difficult binary classi-
fication problems from the perspective of weighting the binary classifiers. First we proposed the
Fractional Programming Weighted decoding (FP.Weighted decoding) algorithm. The FP.Weighted
decoding algorithm guarantees that the query instance will be far from the code word of its most
confused class, while it will be close to the code word of its true class in the code space. Here the
most confused class for an instance implies the class which is not the true class for the instance
but its code word is nearest to the instance in the code space. In doing so, the FP.Weighted decod-
ing algorithm credits larger weights to the binary classifiers that are more accurate; while it credits
relatively smaller weights to the binary classifiers that are less accurate. Thus the binary classifi-
ers that correspond to difficult binary classification problems receive small weights. Second, we
proposed the Bipartite Graph Partitioning Weighted decoding (BGP.Weighted decoding) algorithm.
The weight matrix produced by the BGP.Weighted decoding algorithm is learned by estimating
how difficult the binary classification problems are. By contrast, the existing weighted decoding
algorithms produce the weight matrix based on the generalization performances of the built binary
classifiers , which makes the resulting weight matrix dependent on the binary classifiers employed.
For the BGP.Weighted decoding, the weight matrix is invariant to the employed binary classifiers.
Therefore, recomputing of the weight matrix is unnecessary in case a different binary classification
algorithm is used.

The second research line of this thesis was related to extending class decomposition schemes
for new application fields. The first research question formulated in this context is as follows:

(Q3) How to improve the computational performance of class decomposition schemes for reliable
classification?

This research question was addressed in Chapter 5. There we proposed the mean-based con-
formal class decomposition machines (MCCD machines) and the Poisson conformal class decom-
position machines (PCCD machines). We showed that the MCCD machines and PCCD machines
employ a different approach when computing the aggregated nonconformity scores. They first com-
pute all possible binary nonconformity scores and then, for any new query instance and any class,
they compute the aggregated nonconformity score using the pre-computed binary nonconformity
scores. This contrasts with the existing conformal implementations based on class decomposition
schemes: they recompute all the binary nonconformity scores for any new aggregated noncon-
formity score – which makes them slow. Thus, we conclude that the MCCD machines and PCCD
machines are computationally more efficient than the existing conformal implementations based on
class decomposition schemes.

In addition, we showed that:

• The MCCD machines and PCCD machines employ aggregating nonconformity functions
that do not depend on the type of the class decomposition scheme employed. Thus, they
can be applied for any class decomposition scheme and can be viewed as generalizations of
the conformal implementations based on class decomposition schemes that were proposed
earlier.

122 Chapter 8. Conclusions

• The MCCD machines and PCCD machines differ in the way that they correct errors of the
binary classifiers. Both machines employ loss-based error-correcting mechanisms through
their aggregating non-conformity functions. However, the mechanism of the PCCD ma-
chines is related to the error-correcting mechanism applicable for discrete binary classifiers.
Its nonconformity function produces an estimate of the probability that the errors of the
binary classifiers cannot be corrected. It was demonstrated that, when the average error
correlation between the binary classifiers is negative, this function allows generating class
regions (class sets) with low error and high efficiency.

In conclusion, we state that the MCCD machines and PCCD machines are valid and efficient
classifiers for reliable classification. For most of the experiments their efficiency is superior to that
of the standard conformal classifiers, which can be explained by the error correction mechanism.

The second research question within the second research line is the last question formulated in
the context of this thesis. It reads as follows:

(Q4) How to apply class decomposition schemes for heterogeneous domain adaptation?

This research question was addressed in Chapter 6. In this Chapter we proposed the Bunch-
ing.HDA algorithm as a class decomposition algorithm for classification problems in the context of
heterogeneous domain adaptation. For these problems the target and source domains have different
feature spaces but share the same class labels. In this case, the code space associated with any class
decomposition scheme used is the same for the domains and thus it can be interpreted as a com-
mon latent feature space where the target and source data can be projected. The Bunching.HDA
algorithm is based on this viewpoint and operates as follows. First, it builds the encoding functions
(mappings) for the target data, source data, and class labels. Then it employs these functions to
project all the data and class labels in the common code space. In doing so, the Bunching.HDA al-
gorithm does not make any assumption on the underlying structure of the target and source domains.
It operates by using only common class label information as a domain correspondence.

The Bunching.HDA algorithm allows two embedded classification rules: the decoding rule of
the class decomposition schemes and the decoding rule of the instance decomposition schemes. In
addition, one can build any type of classifier in the common space created by the Bunching.HDA
algorithm. Thus, Bunching.HDA can be viewed as a classifier independent algorithm.

The experiments showed that the the two classification rules built using the Bunching.HDA
are accurate on three real-world domain adaptation problems and they are capable of outperform-
ing standard domain adaptation methods. Thus, since the Bunching.HDA algorithm is a class-
decomposition algorithm, we conclude that class decomposition schemes can be applied for hetero-
geneous domain adaptation with a significant accuracy gain.

Chapter 7 is a follow-up of Chapter 6. In Chapter 7 we studied the problem of classifying
breast cancer instances according to their immunohistochemistry (IHC) subtypes. The data for this
problem come from two breast-cancer domains that have different feature spaces. The first do-
main represents instances with protein measurements while the second domain represents instances
with gene measurements. Both domains share the same set of class labels, i.e., IHC subtypes. We
showed that the IHC classification problem can be viewed as a problem of heterogeneous domain
adaptation and one can achieve more accurate classification using Bunching.HDA. It was shown

8.2. Future Research 123

experimentally that the accuracy gain is statistically significant and ranged from 2% to 12% com-
pared with the baseline classifiers that were trained using either the gene data or the protein data
only. Thus, our main conclusion is that adapting the protein data and the gene data together results
in a more accurate classification of the breast cancer subtypes.

8.2 Future Research

We forsee several directions for future research. We first provide those that are specific to the
decomposition schemes and algorithms proposed in this thesis. Then, we provide more general
research directions related to the whole field of decomposition schemes.

The instance-based decomposition schemes introduced in Chapter 3 employ a classification
(class decoding) rule which is essentially a first nearest-neighbor classifier (Mitchell, 1997). There-
fore, two research directions are possible: (1) to reduce the computational complexity and (2) to
improve the generalization performance. To reduce computational complexity we need to reduce
the storage; i.e., the number of rows and the number of columns in the decoding matrices. To re-
duce the number of rows we propose to employ several techniques from edited nearest neighbor
rules (Marchiori, 2008). Multi-variate feature selection (Guyon and Elisseeff, 2003) can be used
to reduce the number of columns. To improve the generalization performance of the first nearest-
neighbor classifier, distances in the code space can be adjusted for the data. This can be achieved
by employing techniques from metric learning (Kulis, 2012).

The FP.Weighted decoding algorithm and the BGP.Weighted decoding algorithm introduced
in Chapter 4, used standard coding matrices, i.e., coding matrices of exhaustive type (eECOC)
and random coding matrices (rECOC). It is worth trying to use these algorithms with some more
advanced coding matrices that are learned from the data at hand, such as DECOC (Pujol et al.,
2006), or Spectral ECOC (Zhang et al., 2009). As a result one expects to better solve multiclass
classification problems. Also, we only used off-the-shelf UCI datasets during the experiments in
Chapter 4. However the use of FP.Weighted decoding and that of BGP.Weighted decoding for real-
world applications are also an open area of research.

The conformal class decomposition machines proposed in Chapter 5 can be optimized further.
In the PCCD machines we employed the nonconformity function that estimates the probability
estimation that the errors of the binary classifiers cannot be corrected. The function is based on
the Poisson binomial distribution. However, this distribution is based on the assumption that the
binary experiments (in our case the binary classifiers) are independent. This assumption is strong
and in practice can be violated. For this reason, it is important to develop new nonconformity
functions that can approximate the Poisson binomial distribution for the case of dependent binary
experiments. This is expected to result in conformal class decomposition machines that will be valid
(by construction) and much more efficient; i.e., they will produce smaller non-empty class regions.

The Bunching.HDA algorithm proposed in Chapter 6 is a domain adaptation algorithm that
projects target data and source data to a common latent space. Recall that in Chapter 7 we built
naive Bayes and random forest classifiers in the common space created by the Bunching.HDA
algorithm. These classifiers treat the source instances and the target instances in the common space
equally. Alternatively, one can consider building a classifier such as TrAdaBoost (Dai et al., 2007)

124 Chapter 8. Conclusions

that is biased towards the target instances. This may provide a better classification.
In Chapter 7 we showed that adapting the protein and gene domains allows for a more accur-

ate classification for the problem of the IHC breast cancer subtypes. This medical problem is just
one example of classification problems based on data coming from domains with different feature
spaces. Other examples can be found, e.g., in education (predicting student drop-out by adapting
student performance data and demographic data), marketing (predicting customer purchase power
by adapting customer market-basket data and geolocation data), sociology (predicting polls by ad-
apting social-economic data and education data of the voters), etc. These examples show that we
are just at the beginning of the new era of adapting domains.

If we take a more general look on further developing class decomposition schemes, we may
view this research from the perspective of big data (Mayer-Schnberger and Cukier, 2014). One of
the main streams of research in this field is related to data velocity. In classification, data velocity
implies two problems for decomposition schemes:

(1) the instances can arrive and depart over time, and

(2) the classes can arrive and depart over time.

The decomposition schemes can handle the first problem by employing online learning al-
gorithms (Hoi et al., 2014) which track and adapt to the data distributions. The second problem,
however, is still an open problem. Solving this problem assumes developing new instance and class
decomposition schemes that can adapt the coding matrices to the number of classes. The adaptation
process requires smart modifications, since increasing (decreasing) the number of classes increases
(decreases) both the computational complexity and the generalization performance, and, thus, a
trade-off needs to be sought.

References

Ahlberg, E., Spjuth, O., Hasselgren, C., and Carlsson, L. (2015). Interpretation of conformal pre-
diction classification models. In 3rd International Symposium on SLDS, pages 323–334.

Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing multiclass to binary: a unifying
approach for margin classifiers. Journal of Machine Learning Research, 1:113–141.

Bache, K. and Lichman, M. (2013). Uci machine learning repository.

Balasubramanian, V., Ho, S.-S., and Vovk, V. (2014). Conformal Prediction for Reliable Machine
Learning. Morgan Kaufmann, 1 edition.

Banerjee, B. and Stone, P. (2007). General game learning using knowledge transfer. In Proceedings
of International Joint Conference on Artificial Intelligence, pages 672–677.

Banfield, R. E., Hall, L. O., and Bowyer, K. W. (2004). A Comparison of Ensemble Creation
Techniques, pages 223–232. Springer International Publishing.

Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf: Speeded up robust features. In Proceedings
of ECCV, LNCS, pages 404 – 417. Springer.

Blitzer, J., Dredze, M., and Pereira, F. (2007). Biographies, bollywood, boomboxes and blenders:
Domain adaptation for sentiment classification. In Proceedings of ACL, pages 187–205.

Breckels, L. M., Holden, S. B., Wojnar, D., Mulvey, C. M., Christoforou, A., and Groen, A. (2016).
Learning from heterogeneous data sources: An application in spatial proteomics. PLoS Compu-
tational Biology, 12(5).

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5 – 32.

Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. (2009). The balanced accuracy
and its posterior distribution. In In Proceedings of ICPR, pages 3121–3124.

Calafiore, G. and Ghaoui, L. E. (2014). Optimization Models. Cambridge Press, 1 edition.

Campiglio, M., Mnard, S., Palazzo, J. P., and Rosenberg, A. (2008). Microrna gene expression
deregulation in human breast cancer. Cancer Research, 65(16):7065–7070.

Cavill, R., Jennen, D., and Briede, J. J. (2015). Transcriptomic and metabolomic data integration.
Briefings in Bioinformatics, pages 1–11.

Cavill, R., Kamburov, A., Ellis, J. K., Athersuch, T. J., and Blagrove, M. S. C. (2011). Consensus-
phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in
the chemosensitivity of tumour cells. PLoS Computational Biology, pages 7–12.

126 References

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27.

Cohen, W. W. and Singer, Y. (1996). Context-sensitive learning methods for text categorization. In
Proc.of the 19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 307–315.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machiene Learning Journal, 20:273–
297.

Csiszar, I. and Tusnady, G. (1984). Information geometry and alternating minimization procedures.
Statistics and Decisions, 1:205–237.

Dahlmeier, D. and Ng, H. T. (2010). Domain adaptation for semantic role labeling in the biomedical
domain. Journal Bioinformatics, 26:1098–1104.

Dai, W., Yang, Q., and Xue, G.-R. (2007). Boosting for transfer learning. In In Proc. of the 24th
International Conference on Machine Learning, pages 193–438.

Dekel, O. and Singer, Y. (2002). Multiclass learning by probabilistic embeddings. In Advances in
Neural Information Processing Systems 15, pages 945–952.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30.

Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., Sawka, C. A., and Lickley,
L. A. (2007). Triple-negative breast cancer: Clinical features and patterns of recurrence. Clinical
Cancer Research, 13:4429–4434.

Devetyarov, D., Nouretdinov, I., Burford, B., Camuzeaux, S., and Gentry-Maharaj, A. (2012). Con-
formal predictors in early diagnostics of ovarian and breast cancers. Progress in Artificial Intel-
ligence, 1:245–257.

Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286.

Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., and Papadopoulos, D. (2007).
Locally adaptive metrics for clustering high dimensional data. Journal of Data Mining and
Knowledge Discovery, 14:63–67.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian classifier under
zero-one loss. Machine Learning, 29(2):103 – 130.

Duan, L., Xu, D., and Tsang, I. W. (2012). Learning with augmented features for heterogeneous
domain adaptation. In Proceedings of Internatiobal Conference on Machine Learning.

Duan, L., Xu, D., Tsang, I. W., and Luo, J. (2010). Visual event recognition in videos by learning
from web data. In Proceedings of Computer Vision and Pattern Recognition, pages 1959 – 1966.

References 127

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification. Wiley Press, 2 edition.

Escalera, S. and Pujol, O. (2006). Ecoc-one: A novel coding and decoding strategy. In 18th
International Conference on Pattern Recognition (ICPR’06), Hong Kong, pages 578–581.

Escalera, S., Pujol, O., and Radeva, P. (2008). Loss-weighted decoding for error-correcting output
codes. In International Conference on Computer Vision Theory and Applications, pages 145–
155.

Escalera, S., Pujol, O., and Radeva, P. (2010). Error-correcting ouput codes library. Journal of
Machine Learning Research, 11:661–664.

Fernandez, M. and Williams, S. (2010). Closed-form expression for the poisson-binomial probab-
ility density function. IEEE Transactions on Aerospace and Electronic Systems, 46:803–817.

Flach, P. (2012). Machine Learning :The Art and Science of Algorithms that Make Sense of Data.
Cambridge Press, 1 edition.

Furnkranz, J. and Park, S.-H. (2012). Error-correcting output codes as a transformation from multi-
class to multi-label prediction. In Discovery Science, pages 254–267.

Ganchev, P., Malehorn, D., Bigbee, W. L., and Gopalakrishnana, V. (2011). Transfer learning of
classification rules for biomarker discovery and from molecular profiling studies. Journal of
Biomedical Informatics, 44:17–23.

Gong, B., Shi, Y., Sha, F., and Grauman, K. (2012). Geodesic flow kernel for unsupervised domain
adaptationl. In Procedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Gugat, M. (1998). Prox-regularization methods for generalized fractional programming. Journal of
Optimization Theory and Applications, 99:691–722.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182.

Hall, D. I. (2004). Improving svm accuracy by training on auxiliary data sources. In Proceedings
of ACL, pages 256–263.

Hatemi, N. (2012). Thinned-ecoc ensemble based on sequential code shrinking. IEEE Trans.
Pattern Anal. Mach. Intell., 39(1):936–947.

Ho, T. K. and Basu, M. (2000). Measuring the complexity of classification problems. In Interna-
tional Conference on Paatern Recognition, pages 2043–2047.

Hoi, S. C., Wang, J., and Zhao, P. (2014). Libol: A library for online learning algorithms. The
Journal of Machine Learning Research, 15(3):495–499.

Hong, Y. (2013). On computing the distribution function for the poisson binomial distribution.
Computational Statistics and Data Analysis, 59:41–51.

128 References

Hsu, C.-W. and Chih-Jen, L. (2002). A comparison of methods for multiclass support vector ma-
chines. IEEE Transactions on Neural Networks, 13(2):415–425.

Japkowicz, N. and Shah, M. (2014). Evaluating Learning Algorithms. A Classification Perspective.
Cambridge Press, 1 edition.

Jiang, J. and Zha, i. C. (2007). Instance weighting for domain adaptation in nlp. In Proceedings
of the 45th Annual Meeting of the Association for Computational Linguistics (ACL 2007), pages
264–271.

Kulis, B. (2012). Distance metric learning for large margin nearest neighbor classification. Found-
ations and Trends in Machine Learning, 5(4):287–364.

Kulis, B., Saenko, K., and Trevor, D. (2011). What you saw is not what you get: Domain adaptation
using asymmetric kernel transforms. In Procedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1785–1792.

Kuncheva, L. I. and Whitaker, C. J. (2003a). Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Machine Learning, 51(2):181–2007.

Kuncheva, L. I. and Whitaker, C. J. (2003b). Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Machine Learning, 51(2):181–207.

le Cessie, S. and van Houwelingen, J. (1992). Ridge estimators in logistic regression. Applied
Statistics, 41(1):191–201.

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., and Langmead, B. (2010). Tackling the
widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics,
11:733–739.

Li, J., Zhang, Z., Rosenzweig, J., Wang, Y. Y., and Chan, D. W. (2002). Proteomics and bioin-
formatics approaches for identification of serum biomarkers to detect breast cancer. Clinical
Chemistry, 48(8):1296–1304.

Liu, M., Zhang, D., Chen, S., and Xue, H. (2015). Joint binary classifier learning for ecoc-based
multiclass classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
99:1399–1404.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int. Journal of
Comp. Vision, pages 91–110.

Marchiori, E. (2008). Hit miss networks with applications to instance selection. Journal of Machine
Learning Research, 9:997–1017.

Marchiori, E. (2013). Class dependent feature weighting and k-nearest neighbor classification. In
8th IAPR international conference on Pattern Recognition in Bioinformatics, pages 69–78.

References 129

Marom, N. D., Rokach, L., and Shmilovici, A. (2010). Using the confusion matrix for improving
ensemble classifiers. In IEEE 26th Convention of Electrical and Electronics Engineers in Israel,
pages 000555 – 000559.

Mayer-Schnberger, V. and Cukier, K. (2014). Big Data: A Revolution That Will Transform How We
Live, Work, and Think. John Murray.

Mei, S., Fei, W., and Zhou, S. (2011). Gene ontology based transfer learning for protein subcellular
localization. BMC Bioinformatics, 12:44–56.

Mitchell, T. (1978). Version Spaces: An Approach to Concept Learning, PhD Thesis. PhD thesis,
Stanford Univerity.

Mitchell, T. (1997). Machine Learning. McGraw Hill, 1 edition.

Nadeau, C. and Bengio, Y. (2001). Inference for the generalization error. In Advances in Neural
Information Processing Systems 12, pages 307–313.

Onitilo, A. A., Engel, J. M., Greenlee, R. T., PhD, and Mukesh, B. N. (2009). Breast cancer sub-
types based on er/pr and her2 expression: Comparison of clinicopathologic features and survival.
Clinical Medicine and Research, 7:4–13.

Palsson, B. O. and Zengler, K. (2010). The challenges of integrating multi-omics data set. Nature
Chemical Biology, 6:787–798.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345 – 1359.

Papadopoulos, H. (2008). Inductive conformal prediction: Theory and application to neural net-
works. Tools in artificial intelligence, 18:315–330.

Papadopoulos, H., Gammerman, A., and Vovk, V. (2009). Reliable diagnosis of acute abdominal
pain with conformal prediction. Engineering Intelligent Systems, 2:127–137.

Papadopoulos, H., Shafer, G., Vovk, V., and Gammerman, A. (2011). Regression conformal pre-
diction with nearest neighbours. Journal of Artificial Intelligence Research, 40:815–840.

Paredes, R. and Vidal, E. (2000). A class-dependent weighted dissimilarity measure for nearest
neighbor classification problems. Pattern Recognition Letters, 21:1027–1036.

Perou, C. M., Srlie, T., Eisen, M. B., Rijn, M., Jeffrey, S. S., and Rees, C. A. (2000). Molecular
portraits of human breast tumours. Nature, International Weekly of Science, 406:747–752.

Prat, A., Chon, M. U., Cheang, M. M., Parker, J. S., Carrasco, E., and Caballero, R. (2012). Pro-
gnostic significance of progesterone receptorpositive tumor cells within immunohistochemically
defined luminal a breast cancer. Journal of Clinical Oncology, 31:203–209.

Prat, A., Chon, M. U., and Perou, C. M. (2011). Practical implications of gene-expression-based
assays for breast oncologistsr. Journal of Clinical Oncology, 9:48–57.

130 References

Proedrou, K., Nouretdinov, I., Vovk, and Gammerman, A. (2002). Transductive confidence ma-
chines for pattern recognition. In Proceedings of ECML, LNCS, pages 381–390. Springer.

Pujol, O., Radeva, P., and Vitrià, J. (2006). Discriminant ECOC: A heuristic method for application
dependent design of error correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell.,
28(6):1007–1012.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81–86.

Rasiwasia, N., Pereira, J. C., Coviello, E., Doyle, G., Lanckriet, G., Levy, R., and Vasconcelos, N.
(2010). A new approach to cross-modal multimedia retrieval. In Proceedings of ACM Conference
on Multimedia.

Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine
Learning Research, 5:101–141.

Saenko, K., Kulis, B., Fritz, M., and Darrell, T. (2010). Adapting visual category models to new
domains. In Proceedings of ECCV, LNCS, pages 213 – 226. Springer.

Schweikert, G., Widmer, C., Rtsch, G., and Schlkopf, B. (2009). An empirical analysis of do-
main adaptation algorithms for genomic sequence analysis. In Advances in Neural Information
Processing Systems.

Shafer, G. and Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning
Research, 9:371–421.

Shen, R., Mo, Q., Schultz, N., Seshan, V. E., Olshen, A. B., Huse, J., Ladanyi, M., and Sander, C.
(2012). Integrative subtype discovery in glioblastoma using icluster. PLos ONE, 7(4).

Shi, F., Ong, S., and Leckie, C. (2013). Applications of class-conditional conformal predictor in
multi class classification. In 12th International Conference on Machine Learning and Applica-
tions, pages 235–239.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22:888–905.

Shi, X., Liu, Q., Fan, W., and Yu, P. S. (2010). Transfer learning on heterogeneous feature spaces
via spectral transformation. In Proceedings of International Conference on Data Mining, pages
1049 – 1054.

Shuang Zhou, S., Schoenmakers, G., Smirnov, E., Peeters, R., and Driessens, K. (2015). Largest
source subset selection for instance transfer. In In Proceedings of ACML, pages 423–438.

Siegel, R. L., Miller, K. D., and Jemal, A. (2016). Cancer statistics, 2016. A Cancer Journal for
Clinicians, 66:7–30.

Smirnov, E. (2001). Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary
Sets, PhD Thesis. PhD thesis, Universiteit Maastricht.

References 131

Smirnov, E., Moed, M., Nalbantov, G., and Sprinkhuizen-Kuyper, I. (2009). Minimally-sized bal-
anced decomposition schemes for multiclass classification. In Okun, O., Valentini, G., and Mat-
teo, R., editors, Ensembles in machine learning applications, pages 39–58. Springer.

Smith, R. and Windeatt, T. (2010). Class-separability weighting and bootstrapping in error correct-
ing output code ensembles. In 9th International Workshop on Multiple Classifier Systems, pages
185–194.

Sniedovich, M. (2011). Dynamic Programming Foundations and Principles. CRC Press, 2 edition.

Sotiriou, C. and Pusztai, L. (2009). Gene-expression signatures in breast cancer. New England
Journal of Medicine, 360:790–800.

Sun, Y., Todorovic, S., Li, J., and Wu, D. (2005). Unifying the error-correcting output code adaboost
within the margin framework. In International Conference on Machine Learning, pages 872–
879.

Tan, P.-N., Steinbach, M., and Kumar, V. (2006). Introduction to Data Mining. Addison-Wesley, 1
edition.

Torrey, L. and Shavlik, L. (2009). Handbook of Research on Machine Learning Applications and
Trends: Algorithms, Methods, and Techniques. IGI, 1 edition.

Trygg, J. and Wold, S. (2003). O2-pls, a two-block (x-y) latent variable regression (lvr) method
with an integral osc filter. Journal of Chemometrics, 17:53–64.

Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic Learning in a Random World.
Springer, 1 edition.

Wang, C. and Mahadevan, S. (2011). Heterogeneous domain adaptation using manifold alignment.
In Proceedings of International Joint Conference on Artificial Intelligence, pages 1541–1546.

Weigelt, B., Baehner, F. L., and Reis-Filho, J. S. (2010). The contribution of gene expression
profiling to breast cancer classification, prognostication and prediction: a retrospective of the
last decade. The Journal of Pathology, 220:263–280.

Weigelt, B., Pusztai, L., Ashworth, A., and Reis-Filho, J. S. (2011). Challenges translating breast
cancer gene signatures into the clinic. Nat Rev Clin Oncol., 9:58–64.

Weinstein, J. N., Collisson, E. A., Mills, G. B., and Mills, K. R. (2013). The cancer genome atlas
pan-cancer analysis project. Nature Genetics, 45:1113–1120.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A survey on transfer learning. Journal of
Big Data, 3(9):12 – 44.

Wu, P. and Dietterich, T. G. (2004). Improving svm accuracy by training on auxiliary data sources.
In Proceedings of International Conference on Machine Learning.

132 References

Zhang, X., Liang, L., and Shum, H.-Y. (2009). Spectral error correcting output codes for efficient
multiclass recognition. In IEEE 12th International Conference on Computer Vision, Kyoto, pages
1111–1117.

Zhou, J. T., Tsang, I. W., Pan, S. J., and Tan, M. (2014). Heterogeneous domain adaptation for
multiple classes. In Proceedings of 17th Conference on AISTATS. Journal of Machine Learning
Research.

Zhou, S., Smirnov, E., Shoenmakers, G., Driessens, K., and Peeters, R. (2017). Testing exchange-
ability for transfer decision. Pattern Recognition Letters, 88:64–71.

Zhou, X. and Tuck, D. P. (2007). Gene expression msvm-rfe: extensions of svm-rfe for multiclass
gene selection on dna microarray data. Bioinformatics, 9:1106–1114.

Zor, C., Yanikoglu, B. A., Windeatt, T., and Alpaydin, E. (2010). FLIP-ECOC: A greedy optimiza-
tion of the ECOC matrix. In Proceedings of the 25th International Symposium on Computer and
Information Sciences, London, UK, September 22-24, 2010, pages 149–154.

List of Figures

1.1 The instance space of the labeled training data, defined by the features X1 (number
of words) and X2 (book price). The year of publication 1995 is represented by the
label ‘−’, the year of publication 2015 by the label ‘+’. The solid line shows a linear
decision boundary for an optimal classifier. � 4

1.2 Multiclass classification examples. � 6
1.3 An exhaustive coding matrix for four-class problems. � 8

2.1 An illustration of the coding and decoding phases. An query instance xq from the input
space X is first encoded into the code word f(xq) equal to (f1(xq), . . . , fB(xq)).
Then, f(xq) is compared to each class code word of the coding matrix M . Finally, the
class of xq is decoded equal to the class with code word nearest to f(xq). � 18

2.2 One-vs-all coding matrix for 4 classes. � 21
2.3 A decision boundary of a classifier trained for one of the binary classification problems

defined by the four-class one-vs-all coding matrix. � 21
2.4 eECOC coding matrix for 4 classes. � 22
2.5 A decision boundary of a classifier trained for the fifth binary classification problem

from the eECOC coding matrix from Figure 2.4. � 23
2.6 mECOC coding matrix for 4 classes. � 24
2.7 A decision boundary of a classifier trained for the second binary classification problem

from the mECOC coding matrix from Figure 2.6. � 24
2.8 Error correction: the code word of a query instance with true class y3 is nearest to

its true class although the first and the third binary classifiers have misclassified that
instance. � 26

3.1 The feature space of a given four class problem. � 28
3.2 Matrix M of an instance decomposition scheme SP (D) for 4 classes. M is initialized

according to the one-against-all class decomposition scheme. The first three rows cor-
respond to the three instances of class y1. The next two rows correspond to the two
instances of class y2, and so on. � 34

3.3 Left: encoding matrix Me of an encoding instance decomposition scheme SP e(D)

for 4 classes. Me is initialized according to the exhaustive ECOC class decomposi-
tion scheme (eECOC). The first two rows correspond to the two instances of class y1.
The next three rows correspond to the three instances of class y2, and so on. Right:
decoding matrix Md of the decoding instance decomposition scheme SP d(D). � 35

3.4 The accuracy vs the cumulative probability of p(#errors > 1) of the eECOC and IDS
ensembles on the car data. � 44

134 List of Figures

4.2 Inter-class distances. � 61

5.1 Iris � 77
5.2 Vehicle � 78
5.3 Dermatology � 78
5.4 Glass � 79
5.5 Zoo � 79
5.6 Mfeat � 80
5.7 Averaged error correlation of the binary classifiers. � 83

6.2 Loss associated with the functions IMPROVE-T and IMPROVE-C on the target data.
The blue segments of the lines indicate the reduction in the loss caused by IMPROVE-T
and the red segments indicate the reduction caused by IMPROVE-C. � 97

6.3 Loss associated with the functions IMPROVE-T and IMPROVE-C on the source data.
The blue segments of the lines indicate the reduction in the loss caused by IMPROVE-T
and the red segments indicate the reduction caused by IMPROVE-C. � 97

6.4 Loss associated with the Bunching.HDA algorithm. � 98

List of Tables

3.1 The UCI datasets used in the experiments. � 43
3.2 The accuracy of the eECOC and IDS ensembles vs. complexity of logistic regression

binary classifiers controlled by the ridge parameter r in [1, 50]. Bold numbers indicate
statistically better results in group for a r-value. � 44

3.3 The test statistics of Wilcoxon’s signed rank test. Bold numbers indicate statistically
significant results. � 45

4.1 Accuracies (in percentage) obtained using different weighted decoding algorithms when
the base classifier is logistic regression. Statistically significant results are highlighted.
� 63

4.2 The average rank of the classifiers in Table 4.1. � 63
4.3 Average rank differences for Table 4.1 with statistically significant values highlighted.
� 64

5.1 The UCI datasets used in the experiments. � 77
5.2 The error rates of MCCD, PCCD and CNN � 80
5.3 The empty region rates of MCCD, PCCD and CNN � 81
5.4 The multi region rates of MCCD, PCCD and CNN � 81
5.5 The single region rates of MCCD, PCCD and CNN � 82

6.1 HDA Approaches � 88
6.2 The classification accuracies (in percent) for the Office Data. Bold numbers indicate

accuracies that are statistically greater than others based on the two-tailed t-test on
significance level of 0.05. � 101

6.3 The classification accuracies (in percent) for the Wikipedia Data. � 101
6.4 The classification accuracies (in percent) for the Multiple Feature Data. Bold numbers

indicate accuracies that are statistically better than others based on the two-tailed t-test
on significance level of 0.05. � 102

7.1 The subtypes of breast cancer based on IHC biomarkers. � 112
7.2 Class Frequencies in the Protein and the Gene Datasets. � 113
7.3 Accuracy (in percent) of the Bunching.HDA classification rules for different values of

the regularization parameter α. The target data is the protein data and the source data
is the gene data. The best results are given in bold. � 116

7.4 Accuracy (in percent) of the Bunching.HDA classification rules for different values of
the regularization parameter α. The target data is the gene data and the source data is
the protein data. The best results are given in bold. � 116

136 List of Tables

7.5 Balanced accuracy (in percent) of the Bunching.HDA classification rules for different
values of the regularization parameter α. The target data is the protein data and the
source data is the gene data. The best results are given in bold. � 117

7.6 Balanced accuracy (in percent) of the Bunching.HDA classification rules for different
values of the regularization parameter α. The target data is the gene data and the source
data is the protein data. The best results are given in bold. � 117

7.7 Accuracies (in percent) for the protein data and gene data. Bold numbers indicate
statistically better results obtained by a paired t-test at 0.05 significance level within
groups given with double bars. � 117

7.8 Balanced accuracies (in percent) for the protein data and gene data. Bold numbers
indicate statistically better results obtained by a paired t-test at 0.05 significance level
given with double bars. � 118

Publications

Ismailoglu, F., Smirnov, E., Nikolaev, N., and Peeters, R. (2015). Instance-Based Decompositions
of Error Correcting Output Codes. In 12th Int.Workshop on Multiple Classifier Systems (MCS),
LNCS, vol. 9132, pages 51-63. Springer International Publishing.

Ismailoglu, F., Sprinkhuizen-Kuyper, I. G., Smirnov, E., Escalera, S. and Peeters, R. (2015). Frac-
tional Programming Weighted Decoding for Error-Correcting Output Codes. In 12th Int.Workshop
on Multiple Classifier Systems (MCS), LNCS, vol. 9132, pages 38-50. Springer International
Publishing.

Ismailoglu, F. Weighted Decoding for Error-Correcting Output Codes via Bipartite Graph Partition-
ing. (2015). In Proc. of the 27th Benelux Conf. on Artificial Intelligence (BNAIC).

Ismailoglu, F., Smirnov, E. and Peeters, R. (2015). Conformal ECOC Machines. In Proc of IEEE
27th International Conference on Tools with Artificial Intelligence (ICTAI), pages 361–368.

Ismailoglu, F., Cavill R., Smirnov, E., Zhou, S., Collins, P. and Peeters, R. (2017). Heterogeneous
Domain Adaptation for IHC Classification of Breast Cancer Subtypes.
To appear in IEEE/ACM Transactions on Computational Biology and Bioinformatics.

About the Author

Firat Ismailoglu was born in Mersin, Turkey, on March 16,
1984. He graduated from Selcuk University, Turkey with a B.Sc
in Mathematics in 2007. Thereafter, he did a master in Topology
at Mersin University, Turkey for one year. He then shifted his aca-
demic interest more towards computer science. In this sense, he
obtained a master in Knowledge Discovery and Data Mining from
University of East Anglia, UK in 2010. His master thesis entitled A
Medical Data Mining Application Covering Patients Over 90 Years
Old by Using the CART Algorithm was published at the journal
Archives of Gerontology and Geriatrics. As of September 2011,
he started working his PhD research at the Department of Data Sci-
ence and Knowledge Engineering, Maastricht University, the Netherlands. During his PhD research
he has co-supervised a master thesis and published several international conference and journal pub-
lications of high quality. These publications are collected in this thesis. Since January 2017, he has
been working as a postdoc at the Department of Mathematics and Computer Science, Eindhoven
University of Technology.

	Contents
	Introduction
	Classification
	Binary Classification and Multiclass Classification
	Class Decomposition Schemes
	Reliable Classification
	Domain Adaptation
	Research Questions
	Thesis Overview

	Background
	Classification Problem
	Class Decomposition Schemes and Coding Matrices
	Solving Multiclass Classification Problems using Class Decomposition Schemes
	Standard Class Decomposition Schemes

	Instance-based Decompositions
	Problems and Related Work
	Instance-based Decomposition Schemes
	Error Correction Analysis
	Experiments
	Conclusion

	Weighted Decoding via Fractional Programming and Bipartite Graph Partitioning
	Background and Related Work
	Fractional Programming Weighted Decoding
	Bipartite Graph Partitioning Weighted Decoding
	Experiments
	Conclusion

	Conformal ECOC Machines
	Background
	Conformal Framework
	Conformal Class Decomposition Machines
	Experiments
	Conclusion

	The Bunching.HDA Algorithm for Heterogeneous Domain Adaptation
	Background
	Related Work
	Problem Formulation
	Bunching Algorithm for Heterogeneous Domain Adaptation
	Experiments
	Conclusion

	IHC Classification of Breast Cancer Subtypes Using Bunching.HDA
	Background
	Data Integration and Domain Adaptation in Bioinformatics
	IHC Subtypes of Breast Cancer
	Data Derivation and Pre-processing
	Experiments
	Conclusion

	Conclusions
	Answers to the Research Questions
	Future Research

	References
	List of Figures
	List of Tables
	Publications
	About the Author

